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Credibility and uncertainty in PDF analyses

With inputs from A. Courtoy, 
T. Hobbs, A. Kronfeld, 
C.-P. Yuan, Y. Zhao, and 

CTEQ-TEA global analysis 
group

M. Costantini et al., 2404.10056 
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1st PDFLattice workshop, 2017
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Global QCD 
analysis

(N)NNLO global analyses
of QCD data 

Nonperturbative models
and lattice QCD

Precision tests at LHC, Jlab, EIC, AMBER, CERN FPF, …

New insights about unpolarized  
parton distribution functions

CONNECTION?
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How to relate the x dependence of the perturbative and nonperturbative pictures? 

Relevant for processes 
at Q2 ≈ 1 𝐺𝐺𝐺𝐺𝑉𝑉2?

Determined from processes 
at Q2 ≫ 1 𝐺𝐺𝐺𝐺𝑉𝑉2

Does the evidence from primordial dynamics survive PQCD radiation?

PDFs in nonperturbative QCD Phenomenological PDFs
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Robust uncertainty quantification is crucial for relating these pictures.
It involves foundational issues both in physics and information theory.

Relevant for processes 
at Q2 ≈ 1 𝐺𝐺𝐺𝐺𝑉𝑉2?

Determined from processes 
at Q2 ≫ 1 𝐺𝐺𝐺𝐺𝑉𝑉2

PDFs in nonperturbative QCD Phenomenological PDFs
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Global fits of proton scattering data at (N)NNLO accuracy
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A profound inverse problem with many parameters and a wide range of implications

Multiloop QCD and EW computations

Exploration of most complex experimental data sets

Accurate and fast high-performance computing

A testing bed for multidimensional uncertainty quantification, ML/AI, …
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Which strangeness PDF is preferred by lattice QCD?
Unpolarized strangeness 𝑠𝑠 𝑥𝑥,𝑄𝑄  is the least known in global fits; apparent 
contradictions in preferred 𝑠𝑠(𝑥𝑥,𝑄𝑄) values from various experiments and the lattice

 𝑅𝑅𝑠𝑠 ≈ 0.5 at 𝑥𝑥 ∼ 0.02 preferred both 
dimuon SIDIS and inclusive DIS
 𝑅𝑅𝑠𝑠 > 0.7 preferred by ATLAS 7 Z/W 
production and some LHC 
experiments
Unstable fits for 𝑅𝑅𝑠𝑠 > 0.9

Updates?

72019-09-25 P. Nadolsky, 2nd PDFLattice workshop



Asymmetry nominally reaches ≈ 50% at 𝑥𝑥 ≈ 0.25 in 
three global fits. Is there a dynamical mechanism to 
produce it at such 𝒙𝒙?

CT18As NNLO: Strangeness asymmetry with 
a lattice QCD constraint

T.-J. Hou et al., arXiv: 2204.07944

differences 
reflect the 
pulls of LHC 
and other 
experiments

Include lattice data on 𝑠𝑠_ obtained by 
the MSULat/quasi-PDF method 
(2005.01124, Zhang, Lin, Yoon) 

The lattice QCD prediction 
disfavors a large 𝑠𝑠−(𝑥𝑥,𝑄𝑄)  
at 𝑥𝑥 > 0.3 ⇒ reduction in 
𝑠𝑠−(𝑥𝑥,𝑄𝑄)/𝑠𝑠+ 𝑥𝑥,𝑄𝑄  in 
CT18As_Lat fit



Lattice QCD already predicts some features of PDFs from first principles
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Phenomenological analysis, including the parametrization dependence 
L. Kotz, A. Courtoy, M. Chavez, P. N., F. Olness, arXiv:2311.08447

𝜋𝜋± PDFs

without parametrization 
dependence



Lattice QCD already predicts some features of PDFs from first principles
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Phenomenological analysis, including the parametrization dependence 
L. Kotz, A. Courtoy, M. Chavez, P. N., F. Olness, arXiv:2311.08447

𝜋𝜋± PDFs

are the lattice uncertainties
fully estimated?

without parametrization 
dependence



The tolerance puzzle 
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Why do groups fitting similar data sets 
obtain different PDF uncertainties?

The answer has direct implications for high-stake experiments such as 3D 
femtography, 𝑊𝑊 boson mass measurement, tests of nonperturbative QCD 
models and lattice QCD, high-mass BSM searches, etc. 

2024-11-18

Precision PDFs (Snowmass 21 WP) [2203.13923v2]



PDF uncertainty: pheno classification  

1. Experimental uncertainties, e.g., statistical, correlated and 
uncorrelated systematic uncertainties of each experimental data set;

2. Theoretical uncertainties due to the absent radiative contributions, 
approximations in parton showering simulations

3. Parameterization uncertainties associated with the choice of the PDF 
functional form or AI/ML replica training algorithm

– contribute at least a half of the CT18 total PDF uncertainty 

4. Methodological uncertainties associated with the selection of 
experimental data sets, fitting procedures, and goodness-of-fit criteria.
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Kovarik et al., arXiv: 1905.06957

associated with the 
epistemic uncertainty;
explain several 
differences among the 
PDF fits

https://arxiv.org/abs/1905.06957


PDF uncertainty: lattice classification  

1. LATTICE-specific uncertainties: … TO BE FILLED IN
2. + many PHENO uncertainties from the previous slides

To do: 
1. Identify the full error budget for lattice PDF calculations
2. Designate a few calculations (1-2 Mellin moments? pion PDFs? …) as the first targets for 

FLAG-like validation
3. Do a UQ benchmarking study for these calculations                     ⇒ A. Courtoy
4. Understand model averaging for PDFs                                        ⇒ E. Neil

2024-11-18 P. Nadolsky, 3rd PDFLattice workshop 13
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PDF uncertainty: information theory classification
Malinin, Gales, 2018
PN, Courtoy, et al, 2022-24
Hobbs, Kriesten, Gomprecht, 2023-24

Aleatory (dicey) uncertainty: statistical, 
propagated from experiments, reduced by 

increasing data size

Epistemic uncertainty: due to lack of 
knowledge, bias

model  uncertainty: reduced by 
improving the model

distributional uncertainty: reduced 
by representative sampling 



Epistemic
PDF 

uncertainty
Bias-variance 

separation

Smoothness

Curse of 
dimensionality

Big-data 
paradox

Likelihood 
ratios

Post-fit PDF 
validations

Precision PDF applications

Acceptable functions

Representative sampling

Tests of PDFs
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Statistics
& AI/ML

Global 
QCD 

analysis

N!

Balancing precision and replicability in PDF uncertainty 
quantification



A life cycle of a precision measurement
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Example: measurements of the 
gravitational constant

https://en.wikipedia.org/wiki/Gravitational_constant#
Modern_value, retrieved on Oct. 22, 2023

Beginning Entropy

https://en.wikipedia.org/wiki/Gravitational_constant#Modern_value
https://en.wikipedia.org/wiki/Gravitational_constant#Modern_value


A life cycle of a precision measurement
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Timeline of measurements and 
recommended values for G since 1900: 
values recommended based on the NIST 
combination (red), individual torsion 
balance experiments (blue), other types 
of experiments (green).

The combination error bars are unstable 
after 1995

Some latest precise measurements are 
in a conflict among themselves and with 
the post-2014 combination

https://en.wikipedia.org/wiki/Gravitational_constant#
Modern_value, retrieved on Oct. 22, 2023

Entropy

https://en.wikipedia.org/wiki/Gravitational_constant#Modern_value
https://en.wikipedia.org/wiki/Gravitational_constant#Modern_value


A life cycle of a precision measurement
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The entropy stage can be delayed by 
adopting the replicability mindset 
for all components of the analysis

Entropy US National Academy of Sciences, Engineering, 
and Medicine, 2019, https://doi.org/10.17226/25303

https://doi.org/10.17226/25303


Lattice QCD & world-average 𝛼𝛼𝑠𝑠 combination

202024-11-18 P. Nadolsky, 3rd PDFLattice workshop

Lattice determinations of 𝛼𝛼𝑠𝑠 in multiple channels are projected to be 
[far] more precise than many experiments. Several challenges with 
combining the eclectic 𝛼𝛼𝑠𝑠 inputs with the current procedure. Time to rethink how the world-average 𝛼𝛼𝑠𝑠  

combination is performed?

arXiv:2111.09849



Future measurements of the QCD coupling 
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individual 𝛼𝛼𝑠𝑠 measurements can reach 
precision of  ∼ 0.1%

D. d’Enterria et al., EF QCD, 
arXiv:2203.08271

2024-11-18 P. Nadolsky, 3rd PDFLattice workshop



No analysis is an island
entire of itself

• Accuracy is determined both by the individual calculation 
and its ambient connections 

• Aleatory and epistemic uncertainties both play a role

2024-11-18 P. Nadolsky, 3rd PDFLattice workshop 22



Nonreplicability

is

inefficient

2024-11-18 P. Nadolsky, 3rd PDFLattice workshop 23



Fitting = learning
Fitting the data is equivalent to learning the probability distribution. In global 
fits, we also explore statistical foundations of AI/ML. This has an impact on UQ and 
replicability with AI-based techniques. 

2024-11-18 P. Nadolsky, 3rd PDFLattice workshop 24

“… AI can help verify what we already know by addressing science’s replicability 
crisis. Around 70% of scientists report having been unable to reproduce another 
scientist’s experiment—a disheartening figure. As AI lowers the cost and effort 
of running experiments, it will in some cases be easier to replicate results or 
conclude that they can’t be replicated, contributing to a greater trust in 
science.”

Eric Schmidt, This is how AI will transform the way science gets done, 
MIT Technology Review, 2023-07-05

https://www.technologyreview.com/2023/07/05/1075865/eric-schmidt-ai-will-transform-science/
https://www.technologyreview.com/2023/07/05/1075865/eric-schmidt-ai-will-transform-science/
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Sec. 3.4. Revealing the Fundamental Physics of the Universe 

Fundamental physics and cosmology are built on 
statistical analyses of data to test theory, so they 
require a deep understanding of the probabilities in 
the interpretation of data. This requirement is driving 
the mathematical development of AI that can handle 
probabilistic rigor. … For a measurement of a key 
number, it would provide a range of possible values 
that are, say, 68% likely, 95% likely, or 99.9% likely. 
Assessing uncertainties is crucial for fundamental 
physics, and probabilistically rigorous AI would 
be a game changer for many other fields of science 
as well, in addition to being invaluable for 
applications beyond science. 



Possible to-dos for this workshop
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To agree: a common UQ glossary
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To review: foundations of multivariate fits
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1. Fitting as learning
a. Meaning of uncertainties: Bayesian, frequentist, Hessian, Monte-Carlo,…
b. Goodness-of-fit criteria: 𝜒𝜒2 is not the only measure!
c. Wilks’ theorem: the likelihood ratio as the fundamental quantity for hypothesis/parameter testing 
d. Aleatoric, model, distributional uncertainties in an ML-based approach                                   B. Kriesten
e. Averaging over model uncertainty                                                                                                  E. Neil
f. Fitting the likelihood and priors (a Gaussian model mixture)                                                     K. Mohan

2. Dependence on the number of parameters 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝
a. Parsimony: Occam’s razor, information criteria, naturalness…
b. Curse of dimensionality
c. Big-data paradox in sampling with many 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝

3. Fundamental limitations
a. Dominance of saddle points in non-convex optimization with many 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝
b. Bias-variance ambiguity 
c. Impact on systematic uncertainties
d. “No free lunch” theorems

…TO BE CONTINUED



Fitting = learning
Fitting the data implies learning the probability distribution P a D, T(a)). 
The key steps:
1. Assume a probability distribution 𝑃𝑃 {𝐷𝐷𝑘𝑘 𝐷𝐷𝑘𝑘  due to random fluctuations of 𝐷𝐷𝑘𝑘 

around ⟨𝐷𝐷𝑘𝑘⟩. Construct the covariance matrix cov𝑖𝑖𝑖𝑖−1 ≡ ⟨ 𝐷𝐷𝑖𝑖 − 𝐷𝐷𝑖𝑖 𝐷𝐷𝑗𝑗 − 𝐷𝐷𝑗𝑗 ⟩.
2.Minimize |𝑇𝑇𝑘𝑘 𝑎𝑎 − 𝐷𝐷𝑘𝑘 |. It can be done using several forms of 𝜒𝜒2

– A closure test: check that the objective function does not bias the probability from step 1 
   [L. Harland-Lang]; such tests for PDFs are complex and still somewhat limited 

3. A hypothesis test: are the deviations 𝑇𝑇𝑘𝑘 𝑎𝑎 − 𝐷𝐷𝑘𝑘  consistent with random data 
fluctuations estimated in step 1? 
– Here we work with the 𝜒𝜒2 distribution for 𝑁𝑁𝑝𝑝𝑝𝑝 − 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 degrees of freedom 
– Weak and strong goodness-of-fit criteria

4. A parameter test: what variations of parameters 𝑎𝑎 in 𝑇𝑇𝑘𝑘 𝑎𝑎  do not violate the 
acceptance of hypothesis in step 3? 
– Here we also work with 𝜒𝜒2. Tolerance Δ𝜒𝜒2 = 𝑇𝑇2 > 1 to account for hidden errors.
2024-11-18 P. Nadolsky, 3rd PDFLattice workshop 29



A likelihood-ratio test of models 𝑇𝑇1 and 𝑇𝑇2
From Bayes theorem, it follows that 

 
𝑃𝑃 𝑇𝑇2 𝐷𝐷
𝑃𝑃 𝑇𝑇1 𝐷𝐷

 =  
𝑃𝑃 𝐷𝐷 𝑇𝑇2
𝑃𝑃 𝐷𝐷 𝑇𝑇1

 ×  
𝑃𝑃 𝑇𝑇2
𝑃𝑃(𝑇𝑇1)
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≡ 𝑟𝑟posterior

epistemic + aleatoryaleatory

Suppose replicas 𝑇𝑇1 and 𝑇𝑇2 have the same 𝜒𝜒2 [𝑟𝑟likelihood = exp 𝜒𝜒12−𝜒𝜒22

2
= 1] , but 𝑇𝑇2 is disfavored 

compared to 𝑇𝑇1 [𝑟𝑟posterior ≪ 1]. 

This only happens if 𝑟𝑟prior ≪ 1 ∶ 𝑇𝑇2 is discarded based on its prior probability.

≡ 𝑟𝑟likelihood ≡ 𝑟𝑟prior

Soper, Collins, hep-ph/9411214
Kovarik, Nadolsky, Soper, 1905.06957 
Courtoy et al., 2205.10444

https://arxiv.org/abs/hep-ph/9411214
https://arxiv.org/abs/1905.06957
https://arxiv.org/abs/2205.10444


Estimating the epistemic uncertainty is hard
because statistics with many parameters is different!

1. As a rule, there is no single global minimum of  𝜒𝜒2 (or another cost function)
– “Best fits” are dominated by saddle points with the same low 𝜒𝜒2

2. The law of large numbers may not work
– uncertainty may not decrease as 1/√Nrep, leading to the big-data paradox
      [Xiao-Li Meng, 2018; Courtoy et al., ]:

3. Replication of complex measurements is daunting

2024-11-18 P. Nadolsky, 3rd PDFLattice workshop 31

The bigger the data, the surer we fool ourselves.

In typical applications, especially AI/ML ones:



To agree: the meaning of 

Is the PDF uncertainty…

1. Bayesian (a credibility interval)?

2. Frequentist (a confidence interval)?

3. Both?

4. None?

2024-11-18 P. Nadolsky, 3rd PDFLattice workshop 32
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