Extraction of Parton Structure including Lattice QCD

Joe Karpie (A206)

What is this workshop about?

The focus of this workshop is on Uncertainty Quantification A **list of Key Questions** is attached to the Indico page of the workshop

Accessing PDFs: global analyses and lattice computations

- \longrightarrow How does PDF determination work in global analyses and lattice QCD?
- Global QCD analyses: inverse problem and objective functions
 - \longrightarrow How is the inverse problem entailed by PDF determination addresed?
- 3 Lattice QCD: considerations on the validity of the perturbative matching \longrightarrow How is the equivalence between zP_z and ξ^-P^+ defined?
- Setting up a common language: definitions and benchmarks
 - \rightarrow How to benchmark lattice moments and quasi-/pseudo-PDFs with global analyses?
- Combining lattice and experimental data to determine PDFs
 - \longrightarrow What are the efforts/limitations to incorporate lattice data in PDF determinations?
- Output Description of the second state of t
 - \longrightarrow How are aleatoric and epistemic uncertainties combined? How is a model chosen?

Parton and loffe Time distributions

• Unpolarized loffe time distributions I loffe time: $\nu = p \cdot z$

"loffe time distributions instead of parton momentum distributions in description of DIS" V. Braun, P. Gornicki, L. Mankiewicz *Phys Rev* D 51 (1995) 6036-6051

•
$$I_q(\nu, \mu^2) = \frac{1}{2p^+} \langle p | \bar{\psi}_q(z^-) \gamma^+ W(z^-; 0) \psi_q(0) | p \rangle_{\mu^2}$$

 $z^2 = 0$

$$I_g(\nu, \mu^2) = \frac{1}{(2p^+)^2} \langle p \,|\, F_{+i}(z^-) W(z^-; 0) F_{+}^i(0) \,|\, p \rangle_{\mu^2}$$
i = x, y

Parton Distribution Functions

$$I_q(\nu,\mu^2) = \int_{-1}^{1} dx \, e^{ix\nu} f_q(x,\mu^2) \to f_q(x,\mu^2) = \int \frac{d\nu}{2\pi} e^{ix\nu} I_q(\nu,\mu^2)$$

$$I_g(\nu,\mu^2) = \int_0^1 dx \, \cos(x\nu) \, x f_g(x,\mu^2) \to x f_g(x,\mu^2) = \int \frac{d\nu}{2\pi} \cos(x\nu) I_g(\nu,\mu^2)$$

Parton Distributions and the Lattice

 Parton Distributions are defined by operators with light-like separations

- Use space-like separations
 X. Ji *Phys Rev Lett* 110 (2013) 262002
 - Wilson line operators

$$O_{\Gamma}^{\text{WL}}(z) = \bar{\psi}(z)\Gamma W(z;0)\psi(0)$$
$$z^2 \neq 0$$

 Factorizations exist analogous to cross sections

Many approaches

- Wilson line operators
 - LaMET X. Ji Phys. Rev. Lett. 110 (2013) 262002
 - Pseudo-PDF A. Radyushkin Phys. Rev. D 96 (2017) 3, 034025
- Two current correlators
 - Hadronic Tensor
 K.-F. Liu et al *Phys. Rev. Lett.* 72 1790 (1994)
 - HOPE Phys. Rev. D 62 (2000) 074501
 W. Detmold and C.-J. D. Lin, Phys. Rev. D 73 (2006) 014501
 - Short distance OPE

V. Braun and D. Muller Eur. Phys. J. C 55 (2008) 349

• OPE-without-OPE

A. Chambers et al, Phys. Rev. Lett. 118 (2017) 242001

Good Lattice Cross Sections

Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018) 2, 022003

 $O_{WL}(x;z) = \bar{\psi}(x+z)\Gamma W(x+z;x)\psi(x)$

$$O_{CC}(x, y) = J_{\Gamma}(x)J_{\Gamma'}(y)$$

Wilson Line Matrix Elements

- $M^{\alpha}(p,z) = \langle p | \bar{\psi}(z) \gamma^{\alpha} W(z;0) \psi(0) | p \rangle$ More generic element $= 2p^{\alpha} \mathcal{M}(\nu, z^2) + 2z^{\alpha} \mathcal{N}(\nu, z^2)$
- PDF (given collinear divergence handled): $f_q(x, \mu^2) = \int d\nu e^{ix\nu} \mathcal{M}(\nu, 0)$ Quasi-PDF: $\tilde{q}(y, p_z^2) = \int d\nu e^{i\nu y} \mathcal{M}(\nu, \frac{\nu^2}{p_z^2}) \quad z^2 < 0$
- Large Momentum Effective Theory: X. Ji Phys. Rev. Lett. 110 (2013) 262002

$$\tilde{q}(y, p_z^2) = \int \frac{dx}{|x|} K\left(\frac{y}{x}, \frac{\mu^2}{(xp_z)^2}\right) q(x, \mu^2) + O\left(\frac{\Lambda_{\text{QCD}}^2}{(yp_z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-y)p_z)^2}\right)$$

Pseudo-PDF: A. Radyushkin Phys. Rev. D 96 (2017) 3, 034025

$$\mathcal{M}(\nu, z^2) = \int_{-1}^{1} dx e^{i\nu x} P(x, z^2) = \int_{-1}^{1} dx C(x\nu, \mu^2 z^2) q(x, \mu^2) + O(\Lambda_{\text{QCD}}^2 z^2)$$
$$= \int_{-1}^{1} du C'(u, \mu^2 z^2) I_q(u\nu, \mu^2) + O(\Lambda_{\text{QCD}}^2 z^2)$$

6

The Role of Separation and Momentum

- In Structure Functions, quasi-PDF, and pseudo-PDF, variables have common roles
 - **Scale:** $Q^2 / p_z^2 / z^2$

Dynamical variable:

 $x_B / z / p_z$, or $\nu = p \cdot z$

- Scale for factorization to PDF
- Scale in power expansion
- ${\scriptstyle \bullet}\, {\rm Keep}$ away from Λ^2_{QCD}
- Technically only requires single value, use many to study systematics

- Variable describes non-perturbative dynamics
- Can take large or small value
- Want as many as are available
- Wider range improves the inverse problem

From Lattice QCD to PDFs

- Correlators (vacuum expectation values of time separated operators) are described as sums over an exponential for each energy eigenstate.
- Coefficients are matrix elements and exponential rates are energy levels
- Model and/or remove subdominant states by using large time but noise grows exponentially

Unpolarized Gluon PDF

T. Khan, R. Sufian, JK, C. Monahan, C. Egerer, B. Joo, W. Morris, K. Orginos, A. Radyushkin, D. Richards, E. Romero, S. Zafeiropoulos PRD 104 (2021) 9, 094516

From Lattice QCD to PDFs

Hadron Matrix Elements Lattice Correlation Functions 1.2 $\mathcal{M}^{\text{eff}}(t)$, p = 0.41 GeV, $\tau = 1.0$ 1.0 0.8 $\mathfrak{M}(\nu,z^2)$ 0.6 z = az = 2a0.4 z = 3az = 4a0.2 z = 5az = 6a0.0 8 10 12 6 2.0 3.0 5.0 6.0 1.0 4.00.0 t/a \mathcal{V}

2 - param(Q) 1e+00 NNPDF3.1 **CT18** JAM20 1e-01 (x) bx 1e-02 1e-03 1e-04 1e-05 · 0.2 0.4 0.6 0 0.8 1.0 x

Parton Distributions

0.8

0.6

0.4

0.2

0.0

2

4

 $\mathcal{M}^{ ext{eff}}(t)$

z = az = 6a

> Incomplete information gives integral inverse problem $M(\nu) = \int dx C(x\nu) x g(x)$

$$xg(x) = x^{a}(1-x)^{b}/B(a+1,b+1)$$

To more accurately infer PDF, we need larger ν •

Unpolarized Gluon PDF

T. Khan, R. Sufian, JK, C. Monahan, C. Egerer, B. Joo, W. Morris, K. Orginos, A. Radyushkin, D. Richards, E. Romero, S. Zafeiropoulos PRD 104 (2021) 9, 094516

7.0

There is less than you think

- Lattice data are highly correlated and you have less information than you think
- What is the average of these 7 data points?

H. Dutrieux et al (HadStruc) JHEP 08 (2024) 162

What can we do beyond looking at nice PDF fits?

If PDFs are universal....

If the **same** PDFs are factorizable from lattice and experiment, and if power corrections can be controlled for both

Why not analyze both simultaneously?

Factorization of hadronic cross sections

 Factorization of Lattice observables

 $d\sigma_h = d\sigma_q \otimes f_{h/q} + P \cdot C \cdot$

$$M_h = M_q \otimes f_{h/q} + P \cdot C \cdot$$

Consider Lattice data as a theoretical prior to the experimental Global Fit

Complementarity in Lattice and Experiment

EXPERIMENT

- Cross Sections limited to specific max but can reach low *x_B*
- Cross Section matching is integral from x_B to 1
 - Creates sensitivity of large x_B data to hard kernel in large x region
- Wealth of decades of experimental data outweigh modern lattice in both number and systematic error control

LATTICE

- Lattice limited to low ν , inverse Fourier gives to $x \gtrsim 0.2$, but higher sensitivity to larger x
- Lattice matching relation is integral over all *x*
- Low p_z data can reach high signal-to-noise compared to experiment
- Lattice can evaluate independently each spin, flavor, and hadron

Complementarity in pion PDF

- Lattice can readily access different hadrons
- Lattice lacks sensitivity to threshold logs and can be used to study theoretical kernels
- Improves precision in large x where experimental data does not exist
- Low momentum pion data are extremely precise

Spinning gluons

- Positivity assumed in many analyses
 - $|\Delta g| \leq g(x)$
 - Removing reveals new band of -0.2solutions
- $\Delta G = 0.39(9)$ With constraint:
- Without constraint: $\Delta G = 0.3(5)$
- $\Delta G = 0.251(47)(16)$ Lattice:

Y-B. Yang et al (χ -QCD) Phys. Rev. Lett. 118, 102001 (20 K-F. Liu arXiv: 2112.08416

Y. Zhou et al (JAM) Phys. Rev. D 105, 074022 (2022)

R. Jaffe and A. Manohar, Nucl. Phys. B 337, 509 (1990)

$$J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + L_G + \Delta G$$

$$\Delta G = \int dx \,\Delta g(x)$$
¹³

Spinning gluons

C. Egerer et al (HadStruc) arXiv:2207.08733 JK et al arXiv:2310.18179

Can lattice data affect phenomenological polarized gluon analysis?

• The positive and negative solutions without positivity constraints

 Only positive band "consistent" with lattice data, but is too noisy to constrain.

Helicity Gluon PDF with LQCD

 Can this Lattice QCD data discriminate the red and blue solutions?

- Before LQCD: $\chi^2/n \sim 0.65 \ 30$
- After LQCD: $\chi^2/n \sim 0.65 \ 1.5$

JK et al arXiv:2310.18179

 \mathbf{res}^{*}

 $\Delta g > 0$

 $\Delta g < 0$

40

Helicity Gluon PDF with LQCD

JK et al arXiv:2310.18179

Negative and positive Δg appear consistent with experiment and lattice lacksquare

Lattice gluon data impacts quarks

Before LQCD

C. Egerer et al (HadStruc) arXiv:2207.08733 JK et al arXiv:2310.18179

After LQCD

 $\mu^2 = 10 \text{ GeV}^2$

- Quark gluon mixing leads to impact on singlet 0.2 Unexpected 0.0
 - change in extrapolation region

reduced

sections

0.2 $x \Delta g(x)$ 0.0 -0.2-0.20.6 0.2 0.2 0.8 0.6 0.4 0.8 0.4 \boldsymbol{x} \boldsymbol{x} Compensates 0.3 0.3 magnitude of Δg $\overrightarrow{\nabla g}$ in relation to cross \overrightarrow{s} 0.0 0.0 $\Delta g > 0$ $\Delta g < 0$ -0.3-0.3 $\pm g$ 0.2 0.6 0.8 0.2 0.4 0.6 0.8 0.4 17 \boldsymbol{x} \boldsymbol{x}

Resolution of the helicity sign

- Rejection of negative helicity gluon PDF requires 3 datasets
 - RHIC Spin Asymmetries
 - Linear and quadratic in Δg
 - Lattice QCD matrix element
 - Linear in Δg
 - JLab high-x DIS from relaxing cuts on Final state mass
 - Linear in Δg
 - $W^2 > 10 \,\mathrm{GeV}^2 \rightarrow W^2 > 4 \,\mathrm{GeV}^2$

N.T. Hunt-Smith et al arXiv:2403.08117

Conclusions

- Lattice matrix elements can be related to PDFs and their calculation have matured over the decade
- Both Lattice and Perturbative observables deserve to be described by ν not $p_z z$ or $p^+ z^-$

- Adding Lattice data into global fits give better results than either could do alone
- Including Lattice correlations are fundamental to correct error analysis and hypothesis testing

Back up slides

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

• Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$

Helicity Gluon Matrix Element:

•

Gives two amplitudes, one has no leading twist contribution

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

- Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$
 - Gives two amplitudes, one has no leading twist contribution
- Use ratio with finite continuum limit

Helicity Gluon Matrix Element:

•

$$\widetilde{\mathfrak{M}}(\nu, z^2) = i \frac{\left[\widetilde{\mathcal{M}}(z, p)/p_z p_0\right]/Z_L(z/a)}{\mathcal{M}(0, z^2)/m^2}$$

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

- Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$
 - Gives two amplitudes, one has no leading twist contribution
- Use ratio with finite continuum limit

•

$$\widetilde{\mathfrak{M}}(\nu, z^2) = i \frac{\left[\mathcal{M}(z, p)/p_z p_0 \right] / Z_L(z/a)}{\mathcal{M}(0, z^2)/m^2}$$

Relation to gluon and quark singlet ITD

$$\langle x \rangle_g \widetilde{\mathfrak{M}}(\nu, z^2) = \int_0^1 \widetilde{C}^{gg}(u, \mu^2 z^2) \widetilde{I}_g(u\nu, \mu^2) + \widetilde{C}^{qg}(u, \mu^2 z^2) \widetilde{I}_s(u\nu, \mu^2)$$

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

- Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$
 - Gives two amplitudes, one has no leading twist contribution
- Use ratio with finite continuum limit

•

$$\widetilde{\mathfrak{M}}(\nu, z^2) = i \frac{\left[\mathcal{M}(z, p)/p_z p_0 \right] / Z_L(z/a)}{\mathcal{M}(0, z^2)/m^2}$$

Relation to gluon and quark singlet ITD

$$\langle x \rangle_g \widetilde{\mathfrak{M}}(\nu, z^2) = \int_0^1 \widetilde{C}^{gg}(u, \mu^2 z^2) \widetilde{I}_g(u\nu, \mu^2) + \widetilde{C}^{qg}(u, \mu^2 z^2) \widetilde{I}_s(u\nu, \mu^2)$$

Pol Gluon Lorentz decomposition

$$\begin{split} \widetilde{M}_{\mu\alpha;\lambda\beta}^{(2)}(z,p) &= (sz)(g_{\mu\lambda}p_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}p_{\lambda} - g_{\alpha\lambda}p_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}p_{\lambda})\widetilde{\mathcal{M}}_{pp} & \text{I. Balitsky, W. Morris, A. Radyushkin} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda})\widetilde{\mathcal{M}}_{zz} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\beta} - g_{\mu\beta}z_{\alpha}p_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}z_{\mu}p_{\lambda})\widetilde{\mathcal{M}}_{pp} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}z_{\lambda})\widetilde{\mathcal{M}}_{pz} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}p_{\lambda})\widetilde{\mathcal{M}}_{ppz} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\alpha} - p_{\alpha}z_{\mu})(p_{\lambda}z_{\beta} - p_{\beta}z_{\lambda})\widetilde{\mathcal{M}}_{ppzz} \\ &+ (sz)(g_{\mu\lambda}g_{\alpha\beta} - g_{\mu\beta}g_{\alpha\lambda})\widetilde{\mathcal{M}}_{gg} \\ &\widetilde{M}_{\mu\alpha;\lambda\beta}^{(1)}(z,p) &= \left[\widetilde{\mathcal{M}}_{sp}^{(+)} - \nu\widetilde{\mathcal{M}}_{pp}\right] \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{sz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{sz} \\ &= M_{\Delta g} - \frac{m^{2}z^{2}}{\nu}\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &= M_{\Delta g} - \frac{m^{2}z^{2}}{p_{z}^{2}}\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &= M_{\Delta g} - \frac{m^{2}z^{2}}{p_{z}^{2}}\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &= M_{\Delta g} - \frac{m^{2}z^{2}}{p_{z}^{2}}\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g$$

Helicity Gluon PDF

Model both terms

Subtract rest frame

a = 0.094 fm $m_{\pi} = 358 \text{ MeV}$

C. Egerer et al (HadStruc) arXiv: 2207.08733

What is this workshop about?

The focus of this workshop is on Uncertainty Quantification A **list of Key Questions** is attached to the Indico page of the workshop

Accessing PDFs: global analyses and lattice computations

- \longrightarrow How does PDF determination work in global analyses and lattice QCD?
- Global QCD analyses: inverse problem and objective functions
 - \longrightarrow How is the inverse problem entailed by PDF determination addresed?
- 3 Lattice QCD: considerations on the validity of the perturbative matching \longrightarrow How is the equivalence between zP_z and ξ^-P^+ defined?
- Setting up a common language: definitions and benchmarks
 - \rightarrow How to benchmark lattice moments and quasi-/pseudo-PDFs with global analyses?
- Combining lattice and experimental data to determine PDFs
 - \longrightarrow What are the efforts/limitations to incorporate lattice data in PDF determinations?
- Output Description of the second state of t
 - \longrightarrow How are aleatoric and epistemic uncertainties combined? How is a model chosen?

Other Faces of WL Matrix Element

- Some are Lorentz invariant interpretations
- These interpretations nor the functions' bounds require small z^2 , only relation to light cone PDF with $z^2 = 0$ and some other regulation Review: A. Radyushkin (2019) 1912.04244 $i\chi_{d_i}(k,p) = i^l \frac{P(\text{c.c.})}{(4\pi i)^{2L}} \int_0^\infty \prod_{i=1}^l d\alpha_j [D(\alpha)]^{-2}$ $\chi(k,p)$ $\times \exp\left\{ik^2\frac{A(\alpha)}{D(\alpha)} + i\frac{(p-k)^2B_s(\alpha) + (p+k)^2B_u(\alpha)}{D(\alpha)}\right\}$ $x_{d_i} = \frac{B_{s_{d_i}}(\alpha) - B_{u_{d_i}}(\alpha)}{A_{d_i}(\alpha) + B_{s_{d_i}}(\alpha) + B_{u_{d_i}}(\alpha)}$ and A, B_u, B_s, C, D are sums of products of α_j Fourier transform to position space $\mathcal{M}(\nu, z^2) = \left[\frac{d^4k}{(2\pi)^4}e^{ik\cdot z}\chi(k, p) = \int_{-1}^{1} dx e^{i\nu x} \int_{0}^{\infty} e^{-i\sigma(z^2-\epsilon)}V(x, \sigma)\right]$

Other Faces of WL Matrix Element

- Some are Lorentz invariant interpretations
- These interpretations nor the functions' bounds require small z^2 , only relation to light cone PDF with $z^2 = 0$ and some other regulation

Review: A. Radyushkin (2019) 1912.04244

Virtuality Distribution Function Lorentz invariant picture σ^{-1} pole gives log z^2 Limits from nature of Feynman diagrams

$$\mathcal{M}(\nu, z^2) = \int_{-1}^{1} dx e^{i\nu x} \int_{0}^{\infty} d\sigma e^{-i\sigma(z^2 - \epsilon)} V(x, \sigma)$$

pseudo-PDF Lorentz invariant picture log z^2 divergence from poles of TMD/VDF

Musch, Hagler, Negele, Schafer PRD 83 (2011) 094507

Straight Link / Primordial TMD Frame dependent picture with nice interpretation

$$1/k_T^2 \text{ pole gives } \log z^2$$

$$z = (0, z^-, z_T) \qquad p = (p^+, \frac{m^2}{p^+}, 0_T)$$

$$\mathcal{M}(\nu, z^2) = \int_{-1}^1 dx e^{i\nu x} \int d^2 k_T e^{ik_T \cdot z_T} F(x, k_T^2)$$

Light cone PDF from regulated integral of TMD Relate to the Lorentz invariant VDF