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(DGLAP) evolution is essential for global analyses of the PDF:

Introduction
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1 18. Structure Functions

18. Structure Functions

Revised August 2023 by E.C. Aschenauer (BNL), R.S. Thorne (UCL) and R. Yoshida (ANL).

18.1 Deep inelastic scattering
High-energy lepton-nucleon scattering plays a key role in determining the partonic structure

of the proton. The process ¸N æ ¸ÕX is illustrated in Fig. 18.1. The filled circle in this fig-
ure represents the internal structure of the proton which can be expressed in terms of structure
functions.
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Figure 18.1: Kinematic quantities for the description of deep inelastic scattering. The quantities
k and kÕ are the four-momenta of the incoming and outgoing leptons, P is the four-momentum of
a nucleon with mass M , and W is the mass of the recoiling system X. The exchanged particle is
a “, W ±, or Z; it transfers four-momentum q = k ≠ kÕ to the nucleon.

Invariant quantities:

‹ = q·P
M = E ≠ EÕ is the lepton’s energy loss in the nucleon rest frame (in earlier literature sometimes

‹ = q · P ). Here, E and EÕ are the initial and final lepton energies in the nucleon rest
frame.

Q2 = ≠q2 = 2(EEÕ
≠

≠æ
k ·

≠æ
k Õ) ≠ m2

¸ ≠ m2
¸Õ where m¸(m¸Õ) is the initial (final) lepton mass. If

EEÕ sin2(◊/2) ∫ m2
¸ , m2

¸Õ , then

¥ 4EEÕ sin2(◊/2), where ◊ is the lepton’s scattering angle with respect to the lepton beam
direction.

x = Q2

2M‹ where, in the parton model, x is the fraction of the nucleon’s momentum carried by the
struck quark. Beyond leading order the equation remains the definition of x, but this
is no longer identical to nucleon momentum fraction.

y = q·P
k·P = ‹

E is the fraction of the lepton’s energy lost in the nucleon rest frame.

W 2 = (P + q)2 = M2 + 2M‹ ≠ Q2 is the mass squared of the system X recoiling against the
scattered lepton.

s = (k + P )2 = Q2

xy + M2 + m2
¸ is the center-of-mass energy squared of the lepton-nucleon system.

The process in Fig. 18.1 is called deep (Q2
∫ M2) inelastic (W 2

∫ M2) scattering (DIS). In
what follows, the masses of the initial and scattered leptons, m¸ and m¸Õ , are neglected.

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update
1st December, 2023 11:10am
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Figure 5.4. Comparison between the LO, NLO and NNLO NNPDF4.0 PDFs. The up, antiup, charm and gluon are
shown at Q = 100 GeV. All results are normalized to the central value of the NNLO set. Solid and dashed bands
correspond respectively to 68% c. l. and one-sigma uncertainties.

↵s(mZ) 0.1160 0.1170 0.1175 0.1180 0.1185 0.1900 0.1200

�2 1.183 1.169 1.165 1.162 1.161 1.162 1.168

Table 5.6. Values of the total �
2 per data point for the NNLO global fit with di↵erent values of ↵s(mZ).

the strongest dependence on ↵s, and it decreases at small x and increases at large x as the value of ↵s is
increased.

In Table 5.6 we show the value of the �
2 per data point obtained in the NNLO fit corresponding to

each value of ↵s. Whereas a full determination of ↵s should be done [206] by using the correlated replica
method of Ref. [138], and also including theory uncertainties, these values suggest that the best-fit value
of ↵s within the NNPDF4.0 framework is consistent with the NNPDF3.1-based determination of Ref. [206]
and with the current PDG value.

As already discussed in Ref. [5], the remaining parametric uncertainties, related to the values of the
quark masses, are expected to be very small, since the dependence on the charm mass is almost entirely
removed by parametrizing the charm PDF, and the dependence on the bottom quark mass is very small
(except on the b-PDF itself and processes specifically sensitive to it).

5.2.3 Comparison to other PDF sets

The NNPDF4.0 NNLO PDFs are compared to other recent global sets, namely CT18 [143] and MSHT20 [144],
in Fig. 5.6. Note that there are substantial di↵erences in the underlying dataset: the CT18 dataset is very
close to that of NNPDF3.1 while the MSHT20 dataset is somewhere in between NNPDF3.1 and NNPDF4.0
(see Appendix. B for a detailed comparison). All results are shown at Q = 100 GeV, normalized to the cen-

51

R. D. Ball et al., Eur.Phys.J.C 82 (2022) 5.Scale variation typically chosen as 2−1 < κ < 2
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Resummations are relevant for the end-point regions:


• Small-x 

• Large-x (threshold)

Introduction
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Probably necessary for sufficient 
precision for x<10-3 at low Q.

Dependence on the resummation 
scheme?
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W 2 = (P + q)2 = M2 + 2M‹ ≠ Q2 is the mass squared of the system X recoiling against the
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R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update
1st December, 2023 11:10am
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Lattice QCD calculations have not yet widely adopted evolution and 
resummations.


• Most of the considerations are just practical: 

Perturbation theory uncertainty is still smaller than the lattice systematic errors. 
(Caveat: in the region where pQCD is supposed to work.)


• But without the perturbative improvements lattice QCD always 
underestimate the systematics in the end-point regions.


• Moreover, high-precision calculations may become reality with new 
ideas, thus making the perturbative improvements necessary.

• Lancosz algorithm for analysis of lattice correlation functions


• Better hadron interpolation operators at large boost momentum


• Lattice simulation without Wilson lines (mainly for the TMDs)

Introduction

5

See Xiang Gao’s talk

See Rui Zhang’s poster presentation

M. Wagman, 2406.20009; M. Wagman and D. Hackett, 2407.21777.

• X. Gao, W.-Y. Liu and YZ, Phys.Rev.D 109 (2024) 9;  
• YZ, 2311.01391, to appear in PRL.
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Large-Momentum Effective Theory
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f(x, μ) = ∫
∞

−∞

dy
|y |

C̄ ( x
y

,
μ

yPz
,

μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )

Lorentz boost
z

t
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z/2�z/2

� �zp
2

�zp
2

• X. Ji, PRL 110 (2013); SCPMA 57 (2014).  
• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, 

Rev.Mod.Phys. 93 (2021).
• Power expansion in parton momentum 
• Valid for a moderate range of x at finite Pz 
• No parameterization from global analyses 
• Matching kernel available at N3LO now

NNLO 
• Chen, Zhu and Wang, PRL. 126 (2021); 
• Li, Ma and Qiu, PRL 126 (2021); 
N3LO 
• Cheng, Huang, Li, Li and Ma, 2410.05141.

See Zheng-Yang Li’s talk.
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Lattice renormalization

Large-Momentum Effective Theory
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“Hybrid scheme renormalization”

|z | ≤ zs ,
h(z, Pz, a)
h(z,0,a)

|z | > zs , eδm(a)|z| h(z, Pz, a)
h(zs,0,a)

X. Ji, YZ, et al., NPB 964 (2021).

|z | ≤ zs ,
hMS(z, Pz, μ)

CMS
0 (z, μ)

|z | > zs , e−m̄0|z| hMS(z, Pz, μ)
CMS

0 (zs, μ)

δm(a) =
m−1

a
+𝒪(ΛQCD)

m̄0 ∼ 𝒪(ΛQCD)

Continuum limit a → 0
Wilson-line mass 

correction

Linear renormalon

Y. Huo, et al. (LPC), NPB 969 (2021).

X. Gao, YZ, et al., PRL 128 (2022).

zs ≪ Λ−1
QCD
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• Leading-renormalon subtraction

Large-Momentum Effective Theory

8

Leading-renormalon resummation (LRR)

Subtraction of leading renormalon ambiguity

• Holligan, Ji, Lin, Su and Zhang, NPB 993 (2023); 
• Zhang, Ji, Holligan and Su (ZJHS23), PLB 844 (2023).

CMS
0 (1/z, z) = 1 +

∞

∑
n=0

cnαn+1
s , cn ∼ ( β0

2π )
n

n!

CLRR
0 (1/z, z) = 1 +

N

∑
n=0 [cn − ( β0

2π )
n

n!] αn+1
s +

∞
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n=0
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s
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value prescription
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FIG. 2: Top: The comparison of C0(ωs(µ), z
2µ2

) from

the fixed-order (dotted), renormalization group resummation

(dashed), and the leading renormalon resummation (solid).

Bottom: m0(ε) extracted from leading renormalon resumma-

tion with PV as a IR regulator.

uncertainty. Thus Eq. (2) achieves the linear-z accu-
racy when the leading renormalon series is resummed.
We also show the NNLO renormalon-resummed results
m0(ω) = 0.164+0.016

→0.003 GeV as the red band to demonstrate
the good convergence with this method, consistent with
the blue band and has smaller scale dependence at small
z. The di!erence between the non-perturbative lattice
result and the perturbation series is well described by
the linear dependence in z in the perturbatively-reliable
region. This gives us confidence that we have reached
twist-three power accuracy for describing the Pz = 0 ma-
trix element.

PDF matching to leading power accuracy We com-
mented after Eq. (2) that the leading-power correction
term m0(ω) multiplies the twist-two matrix elements in
the same way independent of their spin. This observa-
tion is still valid when m0(ω) plays the additional role
to account for the scheme dependence in regularizing
the leading renormalon divergence in the coe”cient func-
tion Ck(εs). This is because all Ck(εs) has the exactly

the same leading renormalon series as a quark “pole”
mass. Moreover, this leading renormalon series expo-
nentiates such that it matches exactly the mass renor-
malization of the Wilson line in the quasi-PDF operator.
Therefore, if we renormalize the large-P z spatial correla-
tors hB(z, P z, a) with the ZR(z, a, µ, ω) and m0(ω) from
the previous section, the resulting hR(z, P z, µ, ω) can be
matched to light-cone PDFs with ω prescription, e.g., PV,
for the leading renormalon in the matching coe”cient
without any explicit leading power corrections.

To extract the x-dependent PDF with linear accuracy
in 1/Pz, one needs either to match the Euclidean coore-
lation functions to the lightcone with linear-z accuracy
in coordinate space then perform a Fourier transforma-
tion, or to first obtain the x-dependent quasi-PDF then
match it to PDF with the linear-1/Pz accuracy. The for-
mer approach faces the problems of the breaking down
of twist expansion and the existence of the Landau pole
when going beyond z → #→1

QCD. So we take the sec-
ond approach, which then requires the LRR correction
to the momentum-space matching. In this approach, to
avoid the Landau pole, we derive the regularized LRR
correction with fixed renormalization scale µ, then ap-
ply the renormalization group resummation in momen-
tum space, as shown in Ref. [14]. Utilizing the fact that
the LRR correction is universal to all Ck, the correction
to the momentum-space matching kernel C(x, y, µ, Pz) is
just the Fourier transformation of the coordinate-space
corrections:

$C
LRR(x, y, µ, Pz, ω) =

∫
yPzdz

2ϑ
ei(x→y)zPz

[
µzCk(εs(µ), z

2µ2)PV ↑

∑

i

µzεi+1
s ri(µ)

]
. (15)

Note that the integrand is linear in z, thus is integrated
to a singular function which includes derivative of delta
functions ϖ↑(x ↑ y). To avoid the instability of its nu-
merical implementation, it is helpful to introduce a small
exponential decay to regularize the long-tail,

z ↓ z exp(↑ϱm|z|), (16)

where the smaller parameter ϱm ↓ 0 along with a
finer discretization of the x ↔ [0, 1] region eventu-
ally recovers its continuum version. With finite but
small ϱm, the extra correction introduced by this reg-
ularization is of O(z2ϱm#QCD), thus is converted to
O(ϱm#QCD/(2xPz)2), not breaking the linear accuracy.
In the hybrid scheme [24], where the integral is from zs
to ↗, we obtain
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Renormalization group improvement (DGLAP evolution)

Large-Momentum Effective Theory

9

f(x, μ) = ∫
∞

−∞

dy
|y |

C̄LRR ( x
y

,
2x
y

μ
2xPz

,
μ̃
μ ) f̃(y, Pz, μ̃) + 𝒪 (

Λ2
QCD

(xPz)2
,

Λ2
QCD

((1 − x)Pz)2 )
Inverse matching 
at μ = κ ⋅ 2xPz

DGLAP evolution from 
 to  GeVκ ⋅ 2xPz μ = 2

Vary  to estimate 
scale uncertainty

κ ∼ 1
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3.0

H
(x

,t
)

Pz = 1.937 GeV

°t = 0 GeV2

NLO+LRR, µ = 2 GeV
NLO+LRR+RGR
NNLO+LRR, µ = 2 GeV
NNLO+LRR+RGR

°t = 1.690 GeV2

NLO+LRR, µ = 2 GeV
NLO+LRR+RGR
NNLO+LRR, µ = 2 GeV
NNLO+LRR+RGR

Pion valence quark GPD at 
zero skewness Pz=1.94 GeV
X. Gao, Q. Shi, YZ et al., arXiv: 2407.03516.

See Qi Shi’s talk

• Matching out of control at 
small x as  

• Singular behavior at  
due to DGLAP evolution 

• No noticeable change at 
moderate x.

αs(2κxPz) ∼ 1

x ∼ 1
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Threshold resummation (TR)

Large-Momentum Effective Theory
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C̄ ( x
y

,
μ

2xPz )
x→y

= H ( μ
2xPz ) |xPz |S ( (y − x)Pz

μ
,

μ
2xPz )

In contrast, in Ref. [140], the mass renormalon series is combined additively with the

fixed-order calculation.

The second di!erence is that the mass renormalon series is evaluated at the semi-

hard scale µi = 2|1 → x|P z in the threshold resumed kernel Ch

(
x
→

y
, yP

z

µh
, µh, µi

)

sg

. To

perform the LRR in the threshold resummation, we replace S in Eq. (2.29) with the LRR

versions in Eq. (4.26). The LRR soft function is applied to both Ch

(
x
→

y
, yP

z

µh
, µh, µi

)

sg

and

Ch

(
x
→

y
, yP

z

µh
, µh, µh

)

sg

in the matching formula Eq. (2.50).

In Ref. [140], the authors study the mass renormalon under collinear factorization

where 2|1 → x|P z ↑ 2|x|P z ↓ ”QCD. In the perturbative matching kernel, the mass

renormalon series is resummed at the physical scale 2|x|P z, and the corresponding power

correction is interpreted as ↑ !QCD

|x|P z . This approach seems reasonable in the moderate

x range where the hard scale 2|x|P z and the semi-hard scale 2|1 → x|P z are similar to

each other. However, in the large x region, it is not accurate because the physical scale

for the mass renormalon series can no longer be approximated as 2|x|P z. Under threshold

factorization, where 2|x|P z ↓ 2|1→x|P z ↓ ”QCD, the mass renormalon series exists only in

the soft function. Therefore, its physical scale should be the semi-hard scale µi = 2|1→x|P z,

and the corresponding power correction is ↑ !QCD

|1→x|P z .

4.4 Numerical test on the leading renormalon resummation

NLO+RGR+LRR+TR
NNLO+RGR+LRR+TR

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

f(x
,μ
)

Figure 8: Similar to Fig. 7 except that the leading renormalon resummation (LRR)
is performed here. The bands show the uncertainties from the scale variations. P z =
1.94GeV, µ = 2GeV, zs = 0.12 fm, and ω = 0.4.

In this subsection, we test the LRR version of Eq. (2.50). The LRR is performed for

the singular terms Ch

(
x
→

y
, |y|P

z

µh
, µh, µi

)

sg

and Ch

(
x
→

y
, |y|P

z

µh
, µh, µh

)

sg

using the methods

discussed in the previous subsections. For the fixed order matching kernel Ch

(
x
→

y
, |y|P

z

µh

)

without threshold expansion, we apply the LRR mostly following the method in [140],

– 32 –

H : αs ln2 2xPz

μ
, αs ln

2xPz

μ

S : αs
1

|x − y |
ln

|x − y |Pz

μ

μh ∝ 2xPz

μs ∝ (1 − x)Pz

• Matching out of control near the end points 
where  

• Improved perturbative convergence at 
moderate x

αs(μh), αs(μs) ∼ 1

Pion valence quark PDF at 
Pz=1.94 GeV

See Yushan Su’s poster presentation

• X. Ji, Y. Liu and Y. Su, JHEP 08 (2023) 037; 
• Y. Liu and Y. Su, JHEP 2024 (2024) 204; 
• X. Ji, Y. Liu, Y. Su and R. Zhang, 2410.02910.

X. Ji, Y. Liu, Y. Su and R. Zhang, 2410.02910.
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• Operator product expansion (OPE):


• Factorization formula:

Short-distance factorization

11

h̃(λ = zPz, z2) =
∞

∑
n=0

Cn(z2μ2)
(−iλ)n

n!
an(μ) + 𝒪(z2Λ2

QCD) ,

h̃(λ = zPz, z2) = ∫
1

0
dω C(ω, z2μ2)h(ωλ, μ) + 𝒪(z2Λ2

QCD) ,

• Power expansion in the distance

• Valid up to a maximum zPz at finite Pz

• Determining the lowest few moments or fitting the x-dependence with a model

• Matching kernel available at N3LO now

an(μ) = ∫
1

0
dx xnf(x, μ)

h(λ) = ∫
1

0
dx eixλf(x, μ)

• A. Radyushkin, Phys.Rev.D 96 (2017); 
• K. Orginos et al., Phys.Rev.D 96 (2017); 
• Braun and Müller, Eur.Phys.J.C 55 (2008);  
• Ma and Qiu, Phys.Rev.Lett. 120 (2018).

T. Izubuchi, X. Ji, L. Jin, I. Stewart, and YZ, Phys.Rev.D 98 (2018)

Cheng, Huang, Li, Li and Ma, 2410.05141.

Complementing with LaMET 
X. Ji, 2209.09332
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Renormalization group improvement


Q: what is the value of ? Or, what is the physical scale for OPE?

• Conventionally one would choose  so that the apparent logarithms vanish;


• In practice,  could be different from 1, but one should still expect ;


• With , perturbation theory will only be reliable for  fm;


• After all, we need to estimate the theory uncertainty associated with  variation.

κ
κ = 1

κ κ ∼ 1

κ = 1 z0 ≲ 0.25

κ

Short-distance factorization

12

h̃(λ = zPz, z2) =
∞

∑
n=0

Cn(αs(κ /z0), κ2)
(−iλ)n

n!
an(κ /z0) + 𝒪(z2Λ2

QCD) ,

h̃(λ = zPz, z2) = ∫
1

0
dω C(αs(κ /z0), ω, κ2)∫

1

0
dx eixλ f(x, κ /z0) + 𝒪(z2Λ2

QCD) ,

z0 = zeγE /2 ≈ 0.89z an(μ) = an(μ0)exp[∫
μ

μ0

dμ′ γn(αs(μ′ ))]

X. Gao, YZ et al., Phys.Rev.D 103 (2021) 9
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• Threshold resummation

Short-distance factorization

13

h̃(λ = zPz, z2) =
∞

∑
n=0

Cn(αs(κ /z0), κ2)
(−iλ)n

n!
an(κ /z0) ,

lim
N→∞

CN =
αsCF

2π [−2 ln2 N′ + 2 ln N′ −
π2

3 ], N′ = NeγE

lim
ω→1

C(ω) = −
αsCF

2π
4 ln(1 − ω)

1 − ω

• In the Mellin moment space, threshold resummation only impacts high moments;


• In the corrrelation function, it mainly affects large ; λ

h̃(λ, z2) = ∫
1

0
dω C(αs(κ /z0), ω, κ2)∫

1

0
dx eixλ f(x, κ /z0)

X. Gao, YZ et al., Phys.Rev.D 103 (2021) 9
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Numerical results:


Short-distance factorization

14

10

FIG. 2. The Wilson coe�cient cN (z2µ2) with N = 2, 4, 16 at
LO, NLO, NLOevo, and NLOevo+NLL accuracy are shown.

nf = 3 to be consistent with the 2+1 flavor lattice en-
semble. Here, hxN

iP z is the Mellin moment with target
mass correction included [46],

hx
N
iP z = hx

N
i

N/2X

k=0

(N � k)!

k!(N � 2k)!

⇣
m

2
⇡

4P 2
z

⌘k
. (69)

The target-mass corrections have little e↵ect for the pion
because of the smallness of its mass m⇡ = 300 MeV in
our case. In the previous work [43], the data has been
analyzed with only the NLO Wilson coe�cients.

In Fig. 2, we show cN (z2µ2), with N = 2, 4, 16 and at
a scale µ = 3.2 GeV, as a function of 1/z0 for the leading
order (LO) in ↵s, NLO, NLOevo and NLOevo+NLL. The
DGLAP evolution is included here because for a large
range of z, the logarithm L = ln(z2

0
µ
2) can become large

and reduce the predictive power of OPE with fixed-order

FIG. 3. Extracted values of hx2i (upper panel) and hx4i (lower
panel) by fitting a = 0.04 fm lattice results for nz > n0

z = 1 to
Eq. (68) at each value z, using Wilson coe�cients of di↵erent
accuracy.

Wilson coe�cients. As one can see, the DGLAP evolu-
tion is indeed an important e↵ect within the range of z
we considered, and the LL resummation of L makes the
Wilson coe�cients change slower than the NLO ones as
1/z0 is varied. However, one can also notice that as N in-
creases the size of one-loop correction grows in the NLO-
evo Wilson coe�cient, which even makes it turn negative
at small scales of 1/z0. This is exactly caused by the large
logarithmic term �↵s ln

2
N

0 in Eq. (42), especially with
large ↵s(z

�1

0
), and it implies the necessity of threshold

resummation for either large ↵s or large N appearing in
the Wilson coe�cients. As shown in Fig. 2, significant
impact can be observed for large ↵s (small 1/z0) or N

when we compare the NLOevo+NLL coe�cients to the
NLOevo ones, though there is only mild di↵erence for
N = 2, 4 at 1/z0 > 2 GeV.

As mentioned above, current lattice data is only sen-
sitive to the first few lowest moments. In Fig. 3, we take
the a = 0.04 fm lattice data as an example, and plot the
fitted second moment hx

2
i and fourth moment hx

4
i at

each single 1/z0. In the plots, we skip the data point
at z = a (or 1/z0 =5.5 GeV) to avoid the possible lat-
tice discretization e↵ects. In principle, the result hxn

i(µ)
should only depend on the MS scale µ, as the ln(z2)-
dependence of lattice data should be canceled by that
of the Wilson coe�cient. The cancellation is expected to
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Lattice data not sensitive to the higher moments (or 
large ) which require threshold resummation.λ
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• In LaMET

• Resummations provide quantified estimates of the theory uncertainty, 

which is important for not underestimating the end-point regions.


• Because  GeV is not very large compared to  GeV, there is 
no significant improvement at moderate x.


• In short-distance factorization


• Resummations crucial for determining 


• Because the typical lattice spacing  is not very small, 
there is no significant impact on the lowest few moments or large x

Pz ∼ 2 μ = 2

zmax

a ≳ (4 GeV)−1

Summary
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Summary
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LaMET Observable Kinematic range Accuracy
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X. Gao, Q. Shi, YZ et al., Phys.Rev.D 109 (2024) Proton isovector transversity PDF Pz=1.53 GeV, k=0.707, 1, 1.414 NLO+RGR+LRR

J. Holligan and H.-W. Lin, PRD 110 (2024) Proton isovector unpolarized GPD Pz=2 GeV, k=0.75, 1, 1.5 NNLO+RGR+LRR

J. Holligan and H.-W. Lin, J.Phys.G 51 (2024) 6 Pion valence PDF Pz=1.72 GeV, k=0.75, 1, 1.5 NNLO+RGR+LRR

J. Holligan and H.-W. Lin, 	PLB 854 (2024) Nucleon isovector helicity PDF Pz=1.75 GeV, k=0.75, 1, 1.5 NLO+RGR+LRR
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X. Ji, Y. Liu, Y. Su and R. Zhang, 2410.12910 Pion valence PDF Pz=1.94 GeV, k=0.8,1,1.2 NNLO+RGR+LRR+TR

SDF Observable Kinematic range Accuracy

X. Gao, YZ et al., Phys.Rev.D 103 (2021) 9 Pion valence PDF 2nd and 4th moments a < z < 0.35 fm NLO+RGR+TR

Su, Ji, Yao et al., Nucl.Phys.B 991 (2023) Pion valence PDF 2nd and 4th moments a < z < 0.35 fm, k=0.8, 1, 1.2 NLO+RGR

S. Bhattacharya, X. Gao et al., PRD 108 (2023) Proton GPD 2nd to 6th moments* a < z < 0.3 fm NNLO+RGR*

S. Bhattacharya, X. Gao et al., 2410.03539 Proton axial GPD 2nd, 4th, 6th moments* a < z < 0.3 fm NNLO+RGR*
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• Comparing lattice with phenomenology:

• PDF within a moderate range of x from LaMET


A  extrapolation is still necessary to demonstrate power convergence


• Lowest Mellin moments from OPE


• Combining lattice with phenomenology:

• Short-distance factorization


• Natural to treat lattice matrix elements as experimental data

• Perturbative accuracy better be consistent


• Converge on the kinematic cuts, i.e.,  (and ) and range of 


• LaMET


• Weighted  with the x-dependent results? How to select points from a 
continuous range of x (with correlation)?

Pz → ∞

zmax zmin κ

χ2

Outlook
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