
1/16

tiktaalik: Finite Element Code for the

Evolution of Generalized PartonDistributions

tiktaalik: Finite Element Code for the

Evolution of Generalized PartonDistributions

tiktaalik: Finite Element Code for the

Evolution of Generalized PartonDistributions

tiktaalik: Finite Element Code for the

Evolution of Generalized PartonDistributions

tiktaalik: Finite Element Code for the

Evolution of Generalized PartonDistributions

tiktaalik: Finite Element Code for the

Evolution of Generalized PartonDistributions

Adam FreeseAdam FreeseAdam FreeseAdam FreeseAdam FreeseAdam Freese

Thomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator FacilityThomas Jefferson National Accelerator Facility

November 19, 2024November 19, 2024November 19, 2024November 19, 2024November 19, 2024November 19, 2024

1/16

GPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needs

I Needs for x-space evolution code:
I Fast: for use in global analysis.
I Differentiable: for machine learning applications.
I Standalone: to be easily usable by anyone (for model calculations, lattice QCD, …)

I General form of evolution equation:

dH(x, ξ,Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ,Q2)

I Numerically solve by discretizing (pixelizing) in x:

dHi(ξ,Q
2)

d log(Q2)
≈

∑
j

Kij(ξ,Q
2)Hj(ξ,Q

2)

I Becomes a matrix equation!

I Solution found via evolution matrices:

Hi(ξ,Q
2) =

∑
j

Mij(ξ,Q
2
0 → Q2)Hj(ξ,Q

2
0)

I Evolution matrix is independent of model-scale GPD.

2/16

tiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matrices

Hi(ξ,Q
2) =

∑
j

Mij(ξ,Q
2
0 → Q2)Hj(ξ,Q

2
0)

I tiktaalik is code that builds matricesMij to evolve GPDs.

I Evolution done in x-space.
I Method based on finite elements.
I Easy-to-use Python interface.

I The code is available online!

I https://github.com/quantom-collab/tiktaalik
I First release only leading order; NLO in progress.

I This talk is about the finite element method behind the code.

https://github.com/quantom-collab/tiktaalik

Building kernel matricesBuilding kernel matrices

3/16

Integral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretization

I First step is to discretize the integral:

S(x, ξ, t, Q2) =

∫ +1

−1

dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I Kernel made up of three distributions; must be integrated separately:

K(x, y, ξ,Q2) = KR(x, y, ξ,Q
2) + [KP (x, y, ξ,Q

2)]+ +KC(Q
2)δ(y − x)

I Regular piece—just a normal integral:∫ +1

−1

dy KR(x, y, ξ,Q
2)H(y, ξ, t, Q2)

I Plus distribution piece:∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) ≡

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
+H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Constant piece (or delta distribution piece):∫ +1

−1

dy KC(Q
2)δ(y − x)H(y, ξ, t, Q2) ≡ KC(Q

2)H(x, ξ, t, Q2)

4/16

Regular pieceRegular pieceRegular pieceRegular pieceRegular pieceRegular piece

I Regular piece approximated using Gauss-Kronrod quadrature.

I The domain [−1, 1] is broken into six pieces with boundaries:

−1 < min(−ξ,−|x|) < max(−ξ,−|x|) < 0 < min(ξ, |x|) < max(ξ, |x|) < 1

I x and ξ grids must be misaligned.
I 15-point quadrature used inside each region.

SR(x, ξ, t, Q
2) ≈

Ng=6×15∑
g=1

wgKR(x, yg, ξ, Q
2)H(yg, ξ, t, Q

2)

I Discretized grid {xi} and quadrature grid {yg} are not the same.
I xi- and ξ-dependent interpolation must be done.
I Interpixels are used for interpolation.

5/16

InterpixelsInterpixelsInterpixelsInterpixelsInterpixelsInterpixels

I Interpixels (interpolated pixel): interpolation basis functions.
I Exploit linearity of polynomial interpolation:

P [y1 + y2](x) = P [y1](x) + P [y2](x)

I GPD pixelation is a sum of pixels:

H =

h1

h2

...

hn

 = h1

1
0
...

0

+ h2

0
1
...

0

+ . . .+ hn

0
0
...

1

 ≡ h1ê1 + h2ê2 + . . .+ hnên

I Interpolated pixelation is a sum of interpixels!

P [H](x) = h1P [ê1](x) + h2P [ê2](x) + . . .+ hnP [ên](x)

I Interpixels are an example of a finite element.
I Used previously in some PDF evolution codes, e.g., HOPPET and APFEL.

6/16

Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

I Interpixel is a piecewise polynomial of fixed order.

I Increase Nx without increasing interpolation order (avoids Runge phenomenon).
I I’m using fifth-order Lagrange interpolation.
I Knots at the discrete xi grid points.

I Each interpixel has oscillations.

I Oscillations cancel in sum.

7/16

Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!

I GPD at Gaussian weight points from piecewise polynomial interpolation:

H(yg, ξ, t, Q
2) ≈

Nx∑
j=1

Hj(ξ,Q
2)P [êj](yg)

I Interpolation decomposed into basis functions (interpixels).

I Integral is only over interpixels:

SR(x, ξ, t, Q
2) ≈

Nx∑
j=1

 Ng∑
g=1

wgKR(xi, yg, ξ, Q
2)P [êj](yg)

︸ ︷︷ ︸(

KR(ξ,Q
2)
)
ij

Hj(ξ, t, Q
2)

I Absorb interpixel into kernel matrix.
I Integral over interpixel independent of specific GPD.
I (Can be generalized: e.g., to adaptive integration.)

8/16

Plus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piece

I Plus distribution piece is a sum of two integrals:

SP (x, ξ, t, Q
2) ≡

∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) = S

(1)
P (x, ξ, t, Q2) + S

(2)
P (x, ξ, t, Q2)

S
(1)
P (x, ξ, t, Q2) =

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
S

(2)
P (x, ξ, t, Q2) = H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Presents numerical difficulties because of 1/(y − x) factors inKP .

9/16

Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)

I Do first integral via Gauss-Kronrod rule still.

I Break into same six integration regions.
I Use same fifth-order Lagrange interpolation.

I Matrix implementation:

S
(1)
P (xi, ξ, t, Q

2) ≈
Nx∑
j=1

 Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)
[
P [êj](yg)− δij

]
︸ ︷︷ ︸(

K
(1)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I Second integral (independent of GPD) done analytically:

S
(2)
P (xi, ξ, t, Q

2) =

Nx∑
j=1

∫ +1

−1
dy

(
KP (xi, y, ξ,Q

2)−KP (y, xi, ξ, Q
2)
)
δij︸ ︷︷ ︸(

K
(2)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

10/16

Constant pieceConstant pieceConstant pieceConstant pieceConstant pieceConstant piece

I The constant piece (delta distribution piece) is trivial.

SC(xi, ξ, t, Q
2) =

∫ +1

−1
dy KC(Q

2)δ(y − xi)H(y, ξ, t, Q2)

=

Nx∑
j=1

(
δijKC(Q

2)
)

︸ ︷︷ ︸(
KC(Q

2)
)
ij

Hj(ξ, t, Q
2)

11/16

Accuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarks

I Excellent accuracy, but spikes to ∼ 1% at x ≈ ±ξ.

Solving the evolution equationsSolving the evolution equations

12/16

Differential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equation

I Combining pieces gives a matrix form of the evolution kernel:

Kij(ξ,Q
2) =

(
KR(ξ,Q

2)
)
ij
+
(
K

(1)
P (ξ,Q2)

)
ij
+
(
K

(2)
P (ξ,Q2)

)
ij
+
(
KC(Q

2)
)
ij

I Turns evolution equation into a matrix differential equation:

dHi(ξ,Q
2)

d log(Q2)
=

Nx∑
j=1

Kij(ξ,Q
2)Hj(ξ,Q

2)

I This can be solved using Runge-Kutta.

13/16

Evolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matrices

I Solution to the evolution equation, via RK4:

Hi(ξ, t, Q
2
fin) =

Nx∑
j=1

Mij(ξ,Q
2
ini → Q2

fin)Hj(ξ,Q
2
ini)

I Evolution matrix:

Mij(ξ,Q
2
ini → Q2

fin) = δij +
1

6
log

Q2
fin

Q2
ini

(
M

(1)
ij (ξ) + 2M

(2)
ij (ξ) + 2M

(3)
ij (ξ) +M

(4)
ij (ξ)

)
I Build using RK4:

M
(1)
ij (ξ) = Kij(ξ,Q

2
ini)

M
(2)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(1)
lj (ξ)

)

M
(3)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(2)
lj (ξ)

)

M
(4)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
fin)

(
δlj + log

Q2
fin

Q2
ini

M
(3)
lj (ξ)

)

14/16

Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++

I Excellent agreement, but differences ∼ 1% at x ≈ ±ξ.

OutlookOutlook

15/16

Future workFuture workFuture workFuture workFuture workFuture work

I Deal with error spikes at x ≈ ±ξ.
I Due to approximating non-analytic function (true GPD) with an analytic function (polynomial).
I Knots in interpixels are non-analytic; changing grid might help.
I Could also have non-analytic map between x space and grid space.

I Improve accuracy at small ξ.
I Code currently only accurate for ξ & 0.1.
I Due to using linear x spacing. (Currently exploring alternatives.)

I Include next-to-leading order (NLO) corrections.

I First paper in preparation!

I Daniel Adamiak, Ian Cloët, Adam Freese, Wally Melnitchouk, Jianwei Qiu, Nobuo Sato, and

Marco Zaccheddu, arxiv:2412.xxxx

16/16

The EndThe EndThe EndThe EndThe EndThe End

I Code package tiktaalik is public!
I https://github.com/quantom-collab/tiktaalik
I First release only leading order; NLO in progress.

Thank you for your time!

https://github.com/quantom-collab/tiktaalik

