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GPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needsGPD evolution code: the needs

I Needs for x-space evolution code:
I Fast: for use in global analysis.
I Differentiable: for machine learning applications.
I Standalone: to be easily usable by anyone (for model calculations, lattice QCD, …)

I General form of evolution equation:

dH(x, ξ,Q2)

d log(Q2)
=

∫ +1

−1
dy K(x, y, ξ,Q2)H(y, ξ,Q2)

I Numerically solve by discretizing (pixelizing) in x:

dHi(ξ,Q
2)

d log(Q2)
≈

∑
j

Kij(ξ,Q
2)Hj(ξ,Q

2)

I Becomes a matrix equation!

I Solution found via evolution matrices:

Hi(ξ,Q
2) =

∑
j

Mij(ξ,Q
2
0 → Q2)Hj(ξ,Q

2
0)

I Evolution matrix is independent of model-scale GPD.
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tiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matricestiktaalik: code to make evolution matrices

Hi(ξ,Q
2) =

∑
j

Mij(ξ,Q
2
0 → Q2)Hj(ξ,Q

2
0)

I tiktaalik is code that builds matricesMij to evolve GPDs.

I Evolution done in x-space.
I Method based on finite elements.
I Easy-to-use Python interface.

I The code is available online!

I https://github.com/quantom-collab/tiktaalik
I First release only leading order; NLO in progress.

I This talk is about the finite element method behind the code.

https://github.com/quantom-collab/tiktaalik


Building kernel matricesBuilding kernel matrices
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Integral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretizationIntegral discretization

I First step is to discretize the integral:

S(x, ξ, t, Q2) =

∫ +1

−1

dy K(x, y, ξ,Q2)H(y, ξ, t, Q2)

I Kernel made up of three distributions; must be integrated separately:

K(x, y, ξ,Q2) = KR(x, y, ξ,Q
2) + [KP (x, y, ξ,Q

2)]+ +KC(Q
2)δ(y − x)

I Regular piece—just a normal integral:∫ +1

−1

dy KR(x, y, ξ,Q
2)H(y, ξ, t, Q2)

I Plus distribution piece:∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) ≡

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
+H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Constant piece (or delta distribution piece):∫ +1

−1

dy KC(Q
2)δ(y − x)H(y, ξ, t, Q2) ≡ KC(Q

2)H(x, ξ, t, Q2)
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Regular pieceRegular pieceRegular pieceRegular pieceRegular pieceRegular piece

I Regular piece approximated using Gauss-Kronrod quadrature.

I The domain [−1, 1] is broken into six pieces with boundaries:

−1 < min(−ξ,−|x|) < max(−ξ,−|x|) < 0 < min(ξ, |x|) < max(ξ, |x|) < 1

I x and ξ grids must be misaligned.
I 15-point quadrature used inside each region.

SR(x, ξ, t, Q
2) ≈

Ng=6×15∑
g=1

wgKR(x, yg, ξ, Q
2)H(yg, ξ, t, Q

2)

I Discretized grid {xi} and quadrature grid {yg} are not the same.
I xi- and ξ-dependent interpolation must be done.
I Interpixels are used for interpolation.
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InterpixelsInterpixelsInterpixelsInterpixelsInterpixelsInterpixels

I Interpixels (interpolated pixel): interpolation basis functions.
I Exploit linearity of polynomial interpolation:

P [y1 + y2](x) = P [y1](x) + P [y2](x)

I GPD pixelation is a sum of pixels:

H =


h1

h2

...

hn

 = h1


1
0
...

0

+ h2


0
1
...

0

+ . . .+ hn


0
0
...

1

 ≡ h1ê1 + h2ê2 + . . .+ hnên

I Interpolated pixelation is a sum of interpixels!

P [H](x) = h1P [ê1](x) + h2P [ê2](x) + . . .+ hnP [ên](x)

I Interpixels are an example of a finite element.
I Used previously in some PDF evolution codes, e.g., HOPPET and APFEL.
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Interpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demoInterpixel demo

I Interpixel is a piecewise polynomial of fixed order.

I Increase Nx without increasing interpolation order (avoids Runge phenomenon).
I I’m using fifth-order Lagrange interpolation.
I Knots at the discrete xi grid points.

I Each interpixel has oscillations.

I Oscillations cancel in sum.
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Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!Regular piece: now with interpixels!

I GPD at Gaussian weight points from piecewise polynomial interpolation:

H(yg, ξ, t, Q
2) ≈

Nx∑
j=1

Hj(ξ,Q
2)P [êj ](yg)

I Interpolation decomposed into basis functions (interpixels).

I Integral is only over interpixels:

SR(x, ξ, t, Q
2) ≈

Nx∑
j=1

 Ng∑
g=1

wgKR(xi, yg, ξ, Q
2)P [êj ](yg)


︸ ︷︷ ︸(

KR(ξ,Q
2)
)
ij

Hj(ξ, t, Q
2)

I Absorb interpixel into kernel matrix.
I Integral over interpixel independent of specific GPD.
I (Can be generalized: e.g., to adaptive integration.)
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Plus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piecePlus distribution piece

I Plus distribution piece is a sum of two integrals:

SP (x, ξ, t, Q
2) ≡

∫ +1

−1

dy [KP (x, y, ξ,Q
2)]+H(y, ξ, t, Q2) = S

(1)
P (x, ξ, t, Q2) + S

(2)
P (x, ξ, t, Q2)

S
(1)
P (x, ξ, t, Q2) =

∫ +1

−1

dy KP (x, y, ξ,Q
2)
(
H(y, ξ, t, Q2)−H(x, ξ, t, Q2)

)
S

(2)
P (x, ξ, t, Q2) = H(x, ξ, t, Q2)

∫ +1

−1

dy
(
KP (x, y, ξ,Q

2)−KP (y, x, ξ,Q
2)
)

I Presents numerical difficulties because of 1/(y − x) factors inKP .



9/16

Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)Plus distribution piece (continued)

I Do first integral via Gauss-Kronrod rule still.

I Break into same six integration regions.
I Use same fifth-order Lagrange interpolation.

I Matrix implementation:

S
(1)
P (xi, ξ, t, Q

2) ≈
Nx∑
j=1

 Ng∑
g=1

wgKP (xi, yg, ξ, Q
2)
[
P [êj ](yg)− δij

]
︸ ︷︷ ︸(

K
(1)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)

I Second integral (independent of GPD) done analytically:

S
(2)
P (xi, ξ, t, Q

2) =

Nx∑
j=1

∫ +1

−1
dy

(
KP (xi, y, ξ,Q

2)−KP (y, xi, ξ, Q
2)
)
δij︸ ︷︷ ︸(

K
(2)
P (ξ,Q2)

)
ij

Hj(ξ, t, Q
2)
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Constant pieceConstant pieceConstant pieceConstant pieceConstant pieceConstant piece

I The constant piece (delta distribution piece) is trivial.

SC(xi, ξ, t, Q
2) =

∫ +1

−1
dy KC(Q

2)δ(y − xi)H(y, ξ, t, Q2)

=

Nx∑
j=1

(
δijKC(Q

2)
)

︸ ︷︷ ︸(
KC(Q

2)
)
ij

Hj(ξ, t, Q
2)
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Accuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarksAccuracy benchmarks

I Excellent accuracy, but spikes to ∼ 1% at x ≈ ±ξ.



Solving the evolution equationsSolving the evolution equations
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Differential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equationDifferential matrix equation

I Combining pieces gives a matrix form of the evolution kernel:

Kij(ξ,Q
2) =

(
KR(ξ,Q

2)
)
ij
+
(
K

(1)
P (ξ,Q2)

)
ij
+
(
K

(2)
P (ξ,Q2)

)
ij
+
(
KC(Q

2)
)
ij

I Turns evolution equation into a matrix differential equation:

dHi(ξ,Q
2)

d log(Q2)
=

Nx∑
j=1

Kij(ξ,Q
2)Hj(ξ,Q

2)

I This can be solved using Runge-Kutta.
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Evolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matricesEvolution matrices

I Solution to the evolution equation, via RK4:

Hi(ξ, t, Q
2
fin) =

Nx∑
j=1

Mij(ξ,Q
2
ini → Q2

fin)Hj(ξ,Q
2
ini)

I Evolution matrix:

Mij(ξ,Q
2
ini → Q2

fin) = δij +
1

6
log

Q2
fin

Q2
ini

(
M

(1)
ij (ξ) + 2M

(2)
ij (ξ) + 2M

(3)
ij (ξ) +M

(4)
ij (ξ)

)
I Build using RK4:

M
(1)
ij (ξ) = Kij(ξ,Q

2
ini)

M
(2)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(1)
lj (ξ)

)

M
(3)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
mid)

(
δlj +

1

2
log

Q2
fin

Q2
ini

M
(2)
lj (ξ)

)

M
(4)
ij (ξ) =

Nx∑
l=1

Kil(ξ,Q
2
fin)

(
δlj + log

Q2
fin

Q2
ini

M
(3)
lj (ξ)

)
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Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++Numerical results—comparison to PARTONS/APFEL++

I Excellent agreement, but differences ∼ 1% at x ≈ ±ξ.



OutlookOutlook
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Future workFuture workFuture workFuture workFuture workFuture work

I Deal with error spikes at x ≈ ±ξ.
I Due to approximating non-analytic function (true GPD) with an analytic function (polynomial).
I Knots in interpixels are non-analytic; changing grid might help.
I Could also have non-analytic map between x space and grid space.

I Improve accuracy at small ξ.
I Code currently only accurate for ξ & 0.1.
I Due to using linear x spacing. (Currently exploring alternatives.)

I Include next-to-leading order (NLO) corrections.

I First paper in preparation!

I Daniel Adamiak, Ian Cloët, Adam Freese, Wally Melnitchouk, Jianwei Qiu, Nobuo Sato, and

Marco Zaccheddu, arxiv:2412.xxxx
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The EndThe EndThe EndThe EndThe EndThe End

I Code package tiktaalik is public!
I https://github.com/quantom-collab/tiktaalik
I First release only leading order; NLO in progress.

Thank you for your time!

https://github.com/quantom-collab/tiktaalik

