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PDF uncertainties at NNLO from a MCMC Investigation

Workshop goals addressed in this talk

1. Accessing PDFs: lattice and pheno approaches

B How does a phenomenological fit (global analysis) assess PDFs using a data-driven methodology
grounded in the QCD factorization formalism?

C What are the current efforts, directions, and challenges in both lattice and pheno/global
analyses? How can we foster synergy by establishing a common language between them?

4. Uncertainty Quantification (UQ) and bias/variance tradeoff

B How do we propagate uncertainties using methods such as bootstrap, importance sampling, and
the Hessian formalism?
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PDF uncertainties at NNLO from a MCMC Investigation

Typical minimization procedure
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PDF uncertainties at NNLO from a MCMC Investigation

Experimental data

kinematic coverage of exp. data sets
T

> DIS 1660 pOintS 10° 4 Data sets after cuts

[ HERA 0,04 NC 4 ATLAS Z pr 8 TeV (My)
B HERA 0,4 CC & LHCb W%, Z = 4 7 TeV <
4 HERA NC/CC I BCDMS F; proton 8 LHCb W*,Z = 8 TeV
> N M C F 105 4 [ NCM F; proton ¢ CDF Z-rapidity
ouble diff. e W2 and Q2 cut
» BCDMS I b ATLAS Z pr 8 TV (12) JRVUTTEL VIR, A 4 V0, 04, v, /8, O
\ a4 VooU gV oV oV

#a®

» DY: 324 points
> CDF & DO i
» CMS
» ATLAS
» LHCb

Q? in GeV?
>

» Total: 1984
points 101 10-3 e

momentum fraction =

10! 100
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Typical minimization procedure
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PDF uncertainties at NNLO from a MCMC Investigation

Input functional form

Functional form

fi(x, Qo) = coz® (1 — 2)*(1 + c31/T + c42) Qo = 1.3GeV
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Input functional form

PDF uncertainties at NNLO from a MCMC Investigation

Functional form

fi(x, Qo) = coz® (1 — 2)*(1 + c31/T + c42)

QO =1.3GeV

Uy —
d, —
a+d —
s+s —
g —

Flavor-combinations

C1
C1
C1
€o
€o

Total: 15 parameters

C2
C2
C2

C1

Cq
Cq
Cq

C2

C3

Cq
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Input functional form

PDF uncertainties at NNLO from a MCMC Investigation

Functional form

fi(x, Qo) = coz® (1 — 2)*(1 + c31/T + c42) Qo = 1.3GeV

Flavor-combinations
Uy — (&)
dy -
a+d — ¢
s+ — ¢
g —  Co

Total: 15 parameters

C2
C2
C2

C1

Cq
Cq
Cq

C2

C3

Cq

Result

x?/d.o.f.=2380.25/1969 = 1.20
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PDF uncertainties at NNLO from a MCMC Investigation

The Markov chain Monte Carlo approach

—}[ Input functional at Qg ]
v

g [ DGLAP Evolution to Q; ]4—[ Data at Q; )
£ v
s [ Observable at Q; ]
- v
é [ Calculate x? <
J‘

v
—{__ Minimization MCMC |

Peter Risse (prisse@smu.edu) 9



PDF uncertainties at NNLO from a MCMC Investigation

Markov chain Monte Carlo representation of the posterior

» draw random samples from the posterior function

() initial sample

1 1
post(e|D) = exp (- 3*(e.D))

B rejectedi{sample
© &
—{c1,¢2,...,¢n} : ] \
- 3
b ol
Qo
= O O]

posterior
1(Bly1x )=(y416) x f(y,]8) ---f(y,|6) xf(8)
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Markov chain Monte Carlo representation of the posterior

» draw random samples from the posterior function

() initial sample

1 1
post(e|D) = exp (- 3*(e.D))

’f rejectedsample
@ (&
—4€1,C2,...,C & A
{ 1,02, ) n} % o ,/ T
4 ' HO— 00000
i g ."Ommmm
» samples have to reproduce the expectation value g 020 v )
and higher modes - -I-

posterior
1(Bly1x )=(y416) x f(y,]8) ---f(y,|6) xf(8)

n

B(0(e)} =~ 3" O(e:)

i=1
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PDF uncertainties at NNLO from a MCMC Investigation

Markov chain Monte Carlo representation of the posterior

» construct the Monte Carlo samples via a Markov chain

{c1 =¢ca = - > cp_1 > ¢y}

with  p;(c) = /dc'pi_l(c’)T(c’,c)

» with the transition kernel T'(c,c’)

pi(c) ooy post(c|D)

proper MCMC algorithm: T'(c, c’)
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Markov chain Monte Carlo representation of the posterior
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Markov chain Monte Carlo representation of the posterior
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PDF uncertainties at NNLO from a MCMC Investigation

Choosing the proposal distribution — Adaptive Metropolis-Hastings

1. Use normal random walk Metropolis-Hastings until Ny samples have been obtained
» proposal distribution: multivariate Gaussian

Cit1  proposed from  ¢(€it1,¢;) = N(ci, Co) with Co: covariance matrix from user input

H. Haario et al.: “An adaptive Metropolis algorithm”, Bernoulli 7.2 (Apr. 2001)
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Choosing the proposal distribution — Adaptive Metropolis-Hastings

1. Use normal random walk Metropolis-Hastings until Ny samples have been obtained

» proposal distribution: multivariate Gaussian
Cit1  proposed from  ¢(€it1,¢;) = N(ci, Co) with Co: covariance matrix from user input

2. switch to a self learning proposal distribution

Ciy1  proposed from q(Cit1,¢;) = (1 — B)N (ci,scale - Cy) + BN (ci, Co)

with self learned C;

» 0 < 8 <1 controls the impact of the 'learned’ proposal

H. Haario et al.: “An adaptive Metropolis algorithm”, Bernoulli 7.2 (Apr. 2001)
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Choosing the proposal distribution — Adaptive Metropolis-Hastings

1. Use normal random walk Metropolis-Hastings until Ny samples have been obtained
» proposal distribution: multivariate Gaussian

Cit1  proposed from  ¢(€it1,¢;) = N(ci, Co) with Co: covariance matrix from user input

2. switch to a self learning proposal distribution

Cit1  proposed from  ¢(€;41,¢;) = (1 — B)N (c;, scale - C;) + BN (c;, Co)

with self learned C;

» 0 < 8 <1 controls the impact of the 'learned’ proposal
3. reset self learned proposal distribution to boost convergence
» this reduces the impact of the starting point
H. Haario et al.: “An adaptive Metropolis algorithm”, Bernoulli 7.2 (Apr. 2001)
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PDF uncertainties at NNLO from a MCMC Investigation

Autocorrelation
severe substructure
» we cannot use the simple equations to o v btep
. . . 1 VS
estimate variances and higher modes
. c; = 043 + 0.04
» these severely underestimate the true 1
PDF-Uncertainties
400 500
cy vs step
e =0.59 £ 0.09
400 500

autocorrelation at full force
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i : | :
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Autocorrelation

severe substructure

» we cannot use the simple equations to s R o v btep
. . . . 1VS
estimate variances and higher modes e
) fog =043+ 0m
» these severely underestimate the true . 1
PDF-Uncertainties :
300 400 500
i : | :
P since every new sample depends on the current . o P
. - . . . °o Sy, cy vs step
the gain in information is reduced L s e %
N T el o 6 =059+009
Poetee, Do gt Th
i . | wat P
» twice the autocorrelation-time 7 estimates the il ‘--?\j .
number of links in the chain until the next ! . . . "

500

independent sample is drawn

autocorrelation at full force

Peter Risse (prisse@smu.edu)

14



PDF uncertainties at NNLO from a MCMC Investigation

Bridge to Lattice QCD

» lattice QCD uses several methods dealing with
autocorrelation and uncertainty estimation in general
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Bridge to Lattice QCD

Monte Carlo errors with less errors.

) . . Ulli Wolf
» lattice QCD uses several methods dealing with Institut fiir Physik, Humboldt Universitat

. - . . . Newtonstr. 15
autocorrelation and uncertainty estimation in general 12489 Berlin, Germany

» one example is the I'-method ALPHA

» this method estimates the autocorrelation time directly from
the chain

» used to enlarge error estimates as to eliminate bias —
ra
We explain in detail how to estimate mean values and assess statis-
H H : tical errors for arbitrary functions of elementary observables in Monte
> or fllter the tlme series tO get uncorrelated Samples Carlo simulations. The method is to estimate and sum the relevant
autocorrelation functions, which is argued to produce more certain
error estimates than hmnmg mhmqu.-. and hence to help toward a

[

[P ntimme A afembion Smbmmmnbnd

arXiv:hep-lat/0306017
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Filtering based on the I'-method

severe substructure

¢y vs step

cp =043 £0.04

500

using 300 samples directly

PDF uncertainties at NNLO from a MCMC Investigation
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Filtering based on the I'-method

uniform behaviour
severe substructure

c1 vs step c1 vs step
cp = 0.43 + 0.04 ¢ =049 £ 0.02
400 500 400 500
. tep cp vs step
.‘ + 0.09 ¢ = 0.52 & 0.05
0 400 500 400 500
using 300 samples directly thinning 10* samples to a total of 300
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PDF uncertainties at NNLO from a MCMC Investigation

Markov chain Monte Carlo: Advantages

PDF uncertainty estimation

> statistically sound estimation of
uncertainties
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PDF uncertainty estimation

> statistically sound estimation of
uncertainties

» directly comparable to Hessian method
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Markov chain Monte Carlo: Advantages

Distribution of y2-values

—— 90% quantile
B included samples

PDF uncertainty estimation e rejected samples

P statistically sound estimation of
uncertainties

» directly comparable to Hessian method

» estimation of the tolerance T2

2
X° = Xmin

Peter Risse (prisse@smu.edu) 17



PDF uncertainties at NNLO from a MCMC Investigation

Markov chain Monte Carlo: Advantages and Extensions

PDF uncertainty estimation Extensions of current methodology

P statistically sound estimation of » improved proposal algorithm

uncertainties » Hamilton/Hybrid Monte Carlo (see

_ _ LQCD!)
» directly comparable to Hessian method

» Simulated tempering: addressing the
» estimation of the tolerance T2 multimodal y2-function
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Markov chain Monte Carlo: Advantages and Extensions

PDF uncertainty estimation Extensions of current methodology

P statistically sound estimation of » improved proposal algorithm

uncertainties » Hamilton/Hybrid Monte Carlo (see

_ _ LQCD!)
» directly comparable to Hessian method

» Simulated tempering: addressing the
» estimation of the tolerance T2 multimodal y2-function

Thank you for your attention!
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backup
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A flaw in the Parametrization

Down-valence Distribution

xdy(z, Qo) = cox (1—x)* (1 + c3v/x + 0493)

becomes independent of ¢y

C}Enoo zdy(x, Qo) = 9411—1;%0 coz™ (1 — x)* [cqx]

= &oz (1 — )™

» need constrain ¢4 by Uniform Prior:
—1000 < ¢4 < 10.000

PDF uncertainties at NNLO from a MCMC Investigation

1D parameter scan

300

—@— TOTAL
250 —e— DIS total

—e— DY total

200
% 150
<

100

50

0 200 400 600 800 1000 1200
dv_p4
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PDF uncertainties at NNLO from a MCMC Investigation

Thermalization

T T i
Convergence of chains for differentreplica [ /'y 0 WLy 20ty 0

10000+~

—— Replica #3 —— Replica #15 —— Replica #27
——— Replica #9 —— Replica #21 —— Replica #33
8000 == l - |
6000 . 'i H . ‘I
4000 4t
2000+
R S P R i —— |
0 20000 40000 60000 80000 100000 120000 140000 160000

Monte Carlo time
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Thermalization
dv_p4

Convergence of chains for different replica
—— Replica #3 —— Replica #15 —— Replica #27
——— Replica #9 —— Replica #21 —— Replica #33

0 20000 40000 60000 80000 100000 120000 140000 160000
Monte Carlo time
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PDF uncertainties at NNLO from a MCMC Investigation

Fitting setup

PDF parameters Hyperparameters
fi(z, Qo) = coz (1 — ) (1 + c34/7 + cq2) » Proposals: Adaptive Metropolis Hastings
Uy — 1 Cy ¢4 » 36 independent chains with 479.000
dy = c c2 cq (Prion) samples each
ut+d — ¢ ¢ ¢ » burn-in phase: 140.000 samples
s+s N Co » Total: 17 million samples
g — C €1 C2 C3 (4 » removing autocorrelation and burn-in:
Total: 15 parameters Total: 4068 uncorrelated samples

x?/d.o.f.=2380.25/1969 = 1.20
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From Samples to PDF-Uncertainties

Confidence interval for observable O(c)

0_<0<0,
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From Samples to PDF-Uncertainties

. A Cumulative Method
Confidence interval for observable O(c) 0% quontile

I included samples

O_ S O S O+ I rejected samples

Cumulative x2-Method

Central: sample with minimal x2 — O,z

Lower bound: min({O}go%)

Upper bound: max({O}go%)

20 25

XZ - Xlznin

A. Putze et al., arXiv: 0808.2437

Peter Risse (prisse@smu.edu) 23



PDF uncertainties at NNLO from a MCMC Investigation

From Samples to PDF-Uncertainties

Parameter CL
Confidence interval for observable O(c) - snples € Aoy
mm samples ¢ AxZy,
l®  Cumulative Method

0_<0<0,

Cumulative x2-Method

Central: sample with minimal x2 — O,z

Lower bound: min({O}go%)

Upper bound: max({O}go%)

4000 6000
d,—p4 parameter

A. Putze et al., arXiv: 0808.2437
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PDF uncertainties at NNLO from a MCMC Investigation

Comparison with Hessian — Gaussian parameters

x(i+d) at Q =2 GeV

1 [0 Cumulative x?
7771 Hessian asym.

Cumulative x?

AX?}O% =22

xg at Q =2 GeV
[0 Cumulative x?
7771 Hessian asym.

Hessian Method

AXQ =922 1.00
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Comparison with Hessian — non-Gaussian parameters

xuy at Q =2 GeV
[0 Cumulative x?
[0 Hessian asym.

0.5

Cumulative x?

2
AXQO% =22
101 10-* 10-2 10~
0.4
xd, at Q =2 GeV
0.2 [0 Cumulative x?
’ [0 Hessian asym.
Hessian Method 00
1.5 1
2 _
Ax® =22 L0
0.5

104 10-2 1072 101
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PDF uncertainties at NNLO from a MCMC Investigation

Description of Experimental Data

DATA SET REF. DATA POINTS X2 /DATA
DIS

HERA 0,4 neutral current [54] 1039 1.26
HERA 0,4 charged current [54] 81 1.08
BCDMS F; proton [135] 339 1.09
NCM F;, proton [136] 201 1.54
DIS total 1660 1.25
DY

CDF Z-rapidity 137 28 1.10
DO Z-rapidity 138 28 0.60
ATLAS Z pr 8 TeV (M) 139 44 1.06
ATLAS Z pr 8 TeV (yz) 139 48 0.65

[137]
[138]
15
CMS Z pr 8 TeV [140] 28 0.46
[141]
[142]
[143]

CMS double diff. 2011 7 TeV ~ [141 88 1.02
LHCb W*,Z - 1 7 TeV 142 29 1.07
LHCb W*,Z - uu 8 TeV 143 31 1.18
DY total 324 0.91
Total 1984 1.20 (per dof)
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Distribution of \*Values
dof =15
A =201
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PDF uncertainties at NNLO from a MCMC Investigation

APFEL++ — A PDF evolution library in c++ Bertone, arXiv:1708.00911

» main author: V. Bertone

» rewrite of the Fortran APFEL code
» used by the NNPDF collaboration

APFEL@++

Peter Risse (prisse@smu.edu)
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APFEL++ — A PDF evolution library in c++ Bertone, arXiv:1708.00911

» main author: V. Bertone
» rewrite of the Fortran APFEL code A P I I I I I

» used by the NNPDF collaboration

Precompute observables

_y [ (x QM >
_;/X €Ck <§’,U/7 ,U/’QS() fk(gp‘)
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APFEL++ — A PDF evolution library in c++ Bertone, arXiv:1708.00911

» main author: V. Bertone
» rewrite of the Fortran APFEL code A P I I I I I

» used by the NNPDF collaboration

Precompute observables

Z/ Eop (X258 o) fen)

Replace with interpolating functions: ﬂ“

Ne
S wal€) fi(Eas )
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APFEL++ — A PDF evolution library in c++ Bertone, arXiv:1708.00911

» main author: V. Bertone
» rewrite of the Fortran APFEL code A P I I I I I

» used by the NNPDF collaboration

Precompute observables

e X Q M
F(£7Q2): _CA e - aS() wa(g)f(ga; )
@ -3 [ g ) ) i

57%7 ua

Precompute
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Speed-up of theoretical predictions — Hadron collider

partons

Tmpsx = D, D / dz1ds 60
s P

P ap(Q*)F ) (21, 22,Q%) , FO) =" fi(z1,Q%) (22, Q)

ij

» computationally expensive double integrals

P increasing amount of experimental observables
» solution APPLgrid

» interpolate the PDFs

» precompute the integrals by including the interpolating
functions as grids

» now convolute grids with any pdf to get prediction

T. Carli, D. Clements et al., arXiv:0911.2985
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PDF uncertainties at NNLO from a MCMC Investigation

Speed-up of theoretical predictions — Hadron collider

» APPLgrid is still too slow for several reasons

» convolution of the grid with the PDFs is not well optimized
» before one can convolute one has to compute the DGLAP evolution to get the PDFs at every )

» solution fast convolution tables (FK-tables) by o
APFELgrid B M
» combines APPLgrid tables with DGLAP-evolution tables
> only need the PDFs at Qg e v

» well optimized by making use of vectorisation and
multiprocessing ae
> possible speed-up compared to APPLgrid: O(2) — O(10%)

FK AVX-OMP 2x v
FK AVX

FK SSE3
FK product
APPLgrid

«me

Lvae -m

10" 10% 10° 10*

Time per point (j:s) Jatio to FK

V. Bertone et al., arXiv:1605.02070
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