DOE contracts: DE-SC0007981 DE-AC05-06OR

Systematic uncertainties from the implementation of higher twists in QCD analyses

Matteo Cerutti

CTEQ-JLab Collaboration

A. Accardi, I. Fernando, X. Jing, S. Li, J. Owens, S. Park, C.E. Keppel, W. Melnitchouk, P. Monaghan

PDFLattice2024

Motivations

Understand the behaviour of PDFs in the large-x region

Motivations

Which datasets do impose constraints on this region? Main for See, e.g., J. Owens, et al., PRD 87 (2013)

Main focus: $\frac{d}{u}$

u-quark

DIS on proton target Drell—Yan data

. . .

d-quark

W-boson asymmetry DIS on Deuterium targets Proton-Tagged DIS (BONuS)

. . .

We have to deal with Deuterium target at large-x

Which datasets do impose constraints on this region? See, e.g., J. Owens, et al., PRD 87 (2013)

CJ global data set:

• 1000+ data points on Deuterium target • high-x and low- Q^2 • $W^2 > 3 \text{ GeV}^2$, $Q^2 > 1.69 \text{ GeV}^2$

Nuclear corrections TMC Higher Twists

The choice of their implementation may be a source of systematic error

Deuterium: nuclear smearing

Deuterium: off-shell corrections

Nuclear impulse approximation

Melnitchouk, Schreiber, Thomas, PRD 49 (1994) Kulagin, Piller, Weise, PRC 50 (1994) Kulagin and Petti, NPA 765 (2006)

$$F_{2,D}(x_D, Q^2) = \int_{y_{Dmin}}^{y_{Dmax}} dy_D dp_T^2 f_{N/D}(y_D, p_T^2; \gamma) F_{2,N}\left(\frac{x_D}{y_D}, Q^2, p^2\right)$$

Off-shell expansion (in nucleon virtuality p^2 **)**

$$q_N(x, Q^2, p^2) = q_N^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

$$F_{2N}(x,Q^2,p^2) = F_{2N}^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta F(x) \right]$$

Kulagin, Piller, Weise, PRC 50 (1994) Kulagin, Melnitchouk, et al., PRC 52 (1995) Kulagin and Petti, NPA 765 (2006)

Structure function

Free nucleon pdfs/SFs $p^2 = m_N^2$

Off-shell function (To be fitted) of a bound, off-shell nucleon

Off-shell function: parameterization

Off-shell corrections

$$q_N(x, Q^2, p^2) = q_N^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

- O KP-like model $\delta f^N = C(x x_0)(x x_1)(1 + x_0 x)$ + valence sum rule $\int_0^1 dx \, \delta f^N(x) \left[q(x) - \bar{q}(x)\right] = 0$
- Kulagin and Petti, NPA 765 (2006) Accardi, et al., PRD 93 (2016) Accardi, et al., PRD 107 (2023)

O Polynomial model

Alekhin, Kulagin, Petti, PRD 96 (2017) Alekhin, Kulagin, Petti, PRD 105 (2022) Alekhin, Kulagin, Petti, PRD 107 (2023)

Constrain power of CJ dataset only up to x = 0.6

Higher Twist correction

Multiplicative (CJ fits)

Additive

$$F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right) \qquad F_2 = F_2^{LT}(x,Q^2) + \frac{H(x)}{Q^2}$$

$$C(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1 + a_{ht}^{(2)} x)$$

$$H(x) = a_{ht}^{(0)} x^{a_{ht}^{(1)}} (1-x)^{a_{ht}^{(2)}} (1+a_{ht}^{(3)}x)$$

they are related

$$\begin{split} F_2^{LT}(x,Q^2) \bigg(1 + \frac{C(x)}{Q^2} \bigg) &= F_2^{LT}(x,Q^2) + F_2^{LT}(x,Q^2) \frac{C(x)}{Q^2} \\ &= F_2^{LT}(x,Q^2) + \frac{\tilde{H}(x,Q^2)}{Q^2} \end{split}$$

Impact of HT on n/p ratio

Are experimental observables independent of the choice of the HT?

$$\frac{F_{2,n}}{F_{2,p}} = \frac{n}{p} \xrightarrow{x \to 1} \frac{4d+u}{4u+d} \simeq \frac{1}{4}$$

(extrapolation region)

Case 1: isospin-symmetric HT

Mult HT $C_p(x) = C_n(x) = C(x)$

 $\frac{(4d+u)(1+C/Q^2)}{(4u+d)(1+C/Q^2)} \simeq \frac{1}{4}$

No effect of HT

Add HT $H_p(x) = H_n(x) = H(x)$

$$\frac{4d + u + H/Q^2}{4u + d + H/Q^2} \simeq \frac{1}{4} + 27\frac{H}{16uQ^2}$$

Strong effect of HT

Bias identified!!

Results in the CJ fitting framework

Case 1: isospin-symmetric HT

Results in the CJ fitting framework

Case 1: isospin-symmetric HT

Impact of HT on n/p ratio

Are experimental observables independent of the choice of the HT?

$$\frac{n}{p} \xrightarrow{x \to 1} \frac{1}{4} \qquad \text{LT} \qquad \text{Mult HT} \quad C_p(x) = C_n(x) = C(x)$$

Case 2: isospin-breaking HT

Mult HT $C_p(x) \neq C_n(x)$

 $\frac{u+\tilde{H}_n/Q^2}{4u+\tilde{H}_p/Q^2}$

same as Add

Bias removed!

Case 2: isospin-breaking HT

Comparison to other extractions

Alekhin, Kulagin, Petti, PRD 105 (2022)

Comparison to other extractions

Alekhin, Kulagin, Petti, PRD 105 (2022) Alekhin, Kulagin, Petti, PRD 107 (2023)

Systematic "implementation" uncertainty

appears in both
$$\frac{n}{p}$$
 and $\frac{d}{u}$

JAM results

JAM Collaboration, PRL 127 (2021)

Mult HT (p=n) as default choice

$$\delta f(x)|_{\text{CJ-like}} = \frac{u\delta f_u + d\delta f_d}{u+d}$$

Compatible with CJ results

Need more information

CLAS12 (BoNUS12) $e + d \rightarrow e' + p + X$

Hall C $e + p/D \rightarrow e' + X$ Biswas, et al., 2409.15236

New experimental data in the large-x region are needed to understand the correct interconnection of d/u, n/p ratios and off-shell corrections

Deuterium: off-shell corrections

Nuclear impulse approximation

Melnitchouk, Schreiber, Thomas, PRD 49 (1994) Kulagin, Piller, Weise, PRC 50 (1994) Kulagin and Petti, NPA 765 (2006)

$$F_{2,D}(x_D, Q^2) = \int_{y_{Dmin}}^{y_{Dmax}} dy_D dp_T^2 f_{N/D}(y_D, p_T^2; \gamma) F_{2,N}\left(\frac{x_D}{y_D}, Q^2, p^2\right)$$

Off-shell expansion (in nucleon virtuality p^2 **)**

$$q_N(x, Q^2, p^2) = q_N^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$

Kulagin, Piller, Weise, PRC 50 (1994) Kulagin, Melnitchouk, et al., PRC 52 (1995) Kulagin and Petti, NPA 765 (2006)

This is an ASSUMPTION

Is it possible to verify it?

Structure function

of a bound, off-shell nucleon

Need more information

Experimental data differential on the off-shell proton virtuality p_s^2 would allow us to pin down the off-shell correction in a more clean way

TAKE-HOME message

Case 1: isospin-symmetric HT

Case 2: isospin-breaking HT

Off-shell table

Higher-Twist table

Other results

Case 1: isospin-symmetric HT

d/u artificially increased

Higher d/u to absorb bias

Disfavored by DIS on deuteron and W-boson asymmetry data

Other results

Case 1: isospin-symmetric HT

Off-shell function: polynomial of 3^{*rd*} **degree**

Similar to nominal result

Some implementation differences

Theoretic	al choices			
	КР	АКР	CJ15	AKP-like
shadowing	yes	yes (which one?)	MST x<0.1	(same)
smearing	Paris	AV18	AV18 x>0.1	(same)
pi-cloud	yes	yes		
TMC	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
HT	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n & p!=n
HT(x)	??	5 pt. spline	parametrized	parametrized
off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3rd
pi thresh.	yes	yes		

Application: non-singlet moments

$$M_2^{p-n}(Q^2) = \int_0^1 dx \frac{\xi^3}{x^3} \left[\frac{3+9r+8r^2}{20} \right] F_2^{p-n}(x,Q^2)$$

$$\frac{3}{C_2}M_2^{p-n} = \langle x \rangle_{u^+ - d^+} + \text{ HT}$$

Li, Accardi, MC, Fernando et al., PRD 109 (2024)

- x<0.01: Regge theory
- **O** 0.01<x<0.6: Exp. data

 $\langle x \rangle_{u^+ - d^+} = \int_0^1 dx x [u(x) + \bar{u}(x) - d(x) - \bar{d}(x)]$

o x>0.6: CJ15 model