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•Model averaging: account for systematic error due to model choices.  Include all sensible 
model variations; compile results by model; average together, weighted by model probability.


•Above example has 2160 model variations - discretization, finite volume, mass corrections…
model average gives a final combined estimate + error bar for continuum aμll,W.

(Fermilab/HPQCD/MILC collaborations, arXiv:2301.0874)
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Bayesian model averaging: key ideas
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• Bayesian model averaging: key formula is that 
any expectation value is a weighted average 
over model space {Mμ}, given data set D:

(EN and W. Jay, arXiv:2008.01069)

• Usually, models are parametric: we have some 
parameter vector a, taken to be common to all 
models (model Mμ can have extra am, marginalized 
over.)  Expectation values are functions of parameters:
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Model probability weights
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• Asymptotically correct model weights pr(M|D) from 
the (Bayesian) Akaike information criterion (AIC): 
(note,     is only data chi-squared, no explicit priors!)
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(sketch adapted from S. Konishi and G. Kitagawa, Information Criteria 
and Statistical Modeling, Springer Series in Statistics, 2008)

• pr(M) is model prior probability; if you don’t 
know this, ignore it (take as flat prior pr(M) = 1/
NM.)


• “Occam’s razor” penalty term +2k appears, 
where k = # of model parameters.  


• Penalty emerges naturally from theoretical 
considerations as asymptotic bias correction.

• Briefly: sample best-fit a* is an unbiased estimator for 
true parameter aT.  But fluctuations of a* above and 
below aT both overestimate likelihood (underestimate 
χ2.)  Correction of +2 (per dimension of a) —> +2k.

(EN and W. Jay, arXiv:2008.01069)
(EN and J. Sitison, arXiv:2208.14983)
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�2 log pr(Mµ|D) = �2 log pr(Mµ) + BAIC

BAIC = �̂2(a⇤) + 2k
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!39

Two-exponential “mock correlator”model truth, fit to single exponential

Panels: 4 x different draws of mock data

Model average 
agrees well with 
true ground-state

Ex. 1: tmin averaging (toy data)

!39

• Model averaging can 
also be adapted to 
handle data selection 
systematic effects (i.e. 
“data cuts”.)


• Imagine piecewise 
model, with removed 
data fit to “perfect 
model” (e.g. order dC 
polynomial); contributes 
χ2=0 exactly.


• But, bias correct: add 
subset selection penalty 
= 2*(# of data points 
removed).

(EN and W. Jay, arXiv:2008.01069)
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BAIC = �̂2(a⇤) + 2k + 2dC
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Model averaging and functions
• This is a PDF workshop, so the 

expectation values of interest 
are functions and not just single 
values.


• Easy to extend the formalism to 
functions of independent 
variables:
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• (Important: don’t omit model-space systematic error!  
Small here, but not always…)
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Improved information 
criteria
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(EN and J. Sitison, arXiv:2208.14983)
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Using the Kullback-Leibler divergence
• KL divergence (“relative entropy”) gives a path to Bayesian information criteria*.  Basic definition:
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• Second term proportional to -log[pr(M|D)].  This is non-parametric, good - data should 
determine parameters.  But there are multiple ways to obtain the above from a parametric model!


• Three options are natural and give interesting ICs:

(S. Zhou, Bayesian model selection in terms of Kullback-Leibler discrepancy, PhD thesis, Columbia, 2011) 
(S. Zhou, arXiv:2009.09248)

(“plug-in”)

BAIC

(“posterior average”)

(“posterior predictive”)

BPIC

PPIC

(EN and J. Sitison, arXiv:2208.14983)

(sample size N -> ∞)
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Complete formulas

• Various g, H, T, Σ are all tensors of derivatives of chi-squared functions - see our paper 2208.14983, sec. 
IV.  Numerical code available in Python + JAX (gradients/JIT compilation), although the code is not 
polished - just companion code for our paper.


• The above formulas are approximate, NLO in large-N expansion (N = data sample size.)  PPIC subset 
penalty is approximately +2dC plus 1/N corrections.  BPIC has larger bias from posterior avg.


• We advocate use of optimal truncation, which replaces NLO —> LO when NLO terms are too large.  
(Fixes a potential numerical problem with log(…) in PPIC.)
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https://github.com/jwsitison/improved_model_avg_paper

https://github.com/jwsitison/improved_model_avg_paper
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Numerical results: fixed data
• Quadratic model truth, extract constant 

term a0.


• Left: fits to polynomials of degree μ.  Extra 
parameters are penalized, moreso for BPIC.
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• Right: MA vs. sample size log(N).  BPIC does slightly 
better in general, similar to fixed quadratic model.


• (This is sort of a special case since the “true model” 
is nested within the more complex μ>2 models…)
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Numerical results: data selection
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• BPIC cuts aggressively - 
often overly so (bias-
variance tradeoff!)  But it 
does fairly well when fitting 
the true model or with lots of 
data.


• PPIC is more robust against 
noise, otherwise performing 
similarly to BAIC (no 
excessive bias)


• BAIC is reliable and simplest 
to compute; we advocate 
PPIC generally, but nothing 
wrong with AIC!
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Numerical results: data selection (2)

• Scaling results vs. N, similar 
conclusions to previous slide: 
we prefer PPIC, robust results 
and tends to give smaller error 
than BAIC, particularly w/noise


• BPIC has smallest error but can 
be too aggressive, particularly 
for subset selection.


• See paper for many more 
numerical results, including 
tests on real LQCD nucleon 
data (courtesy of JLab/W&M/
MIT/LANL)

12
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Summary
• Model averaging is a powerful and simple technique for dealing with analysis choices 

and associated systematic errors.  Easy to “plug in” to existing analysis chains where 
chi-squared fits are done.


• Bayesian + KL divergence perspective suggests two new ICs: 


• PPIC is more robust against noise and performs well in all tests.  


• BPIC uses Occam’s Razor more aggressively, smaller error at the price of larger bias.


• All (N -> ∞) roads lead to the (B)AIC, which is simple and effective. 


• Thoughts for PDFs:  For methods that aren’t chi-squared fits, need to understand right 
bias correction for however you evaluate likelihood of your model being correct… K-L 
divergence approach?  Other issues?

13
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Backup slides

14
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The Kullback-Leibler divergence
• KL divergence: “relative entropy” between PDFs, true model MT vs. candidate model Mμ.

15

• KL = 0 if the PDFs are equal, positive definite otherwise.  Find the “closest” distribution to 
prMT by maximizing the magnitude of the second term!

• Introduce model parameters a, and this leads to familiar results:

sample log-likelihood, i.e. -χ2/2

• e.g. finding best-fit point a* = minimization of KL divergence (“max likelihood”.)  Same likelihood 
function gives model probability weights, via Bayes theorem:  pr(M|D) ~ pr(D|M).
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Two approaches to subset selection
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(EN and J. Sitison, arXiv:2305.19417)
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• A common part of lattice 
analysis is data cutting: “what 
[tmin, tmax] should I fit my two-
point correlator over?”


• Partition data into kept and cut 
[yK, yC] of size (dK, dC).  Compute 
relative model weights, average!


• “Perfect model method”: Keep 
all data.  yC fit to a model with 
χ2=0; bias correction gives +2dC 
penalty.


• “Subspace method”: Discard 
data in cut partition.  
Recompute total KL divergence, 
gives +dC penalty.
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(EN and W. Jay, arXiv:2008.01069)

(BMW collab, Nature 593 (2021), arXiv:2002.12347)
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(linear fit)

(constant fit) BAIC (perf) 
BAIC (subset)

• Toy numerical example: 
model truth is linear, 
 
 

• For constant fit, both 
criteria are similar; χ2 is 
dominant.


• For linear fit (“true 
model”), both averages 
are right, but subset 
under-penalizes cutting 
so has larger error.

(EN and J. Sitison, arXiv:2305.19417)

• Below: “grand average” 
(both models @ all tmin) 
vs. sample size log(N).


• Both ICs agree well w/
model truth for all N; 
generically larger errors 
for BAIC (subset)
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χ2, dof, and subset selection
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• For a bad fit with large Ndof and 1 < χ2 < 2, we can have AICsub >> 0 but 
AICperf << 0 (lower AIC is preferred.)  Is this a problem?


• Example by explicit construction in appendix B of paper, but favoring a 
“bad fit” over a “good fit” in this way requires that a large amount of data 
are cut for the “good fit”.  Rewrite AICperf to see explicitly that the difference 
is still just data cutting penalty:

• Rewrite both forms of AIC in terms of usual number of 
degrees of freedom, Ndof=dK-k:

(EN and J. Sitison, arXiv:2305.19417)
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Asymptotic bias
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• When constructing any statistical estimator, one typically 
worries about bias, defined as follows: for distribution prT(z) 
with property ξ(z), given a finite sample {y} of size N and 
estimator X({y}),

• In other words, when averaged over the true distribution 
(i.e. over many independent samples), a non-zero bias 
means the estimator is wrong.  We can further define 
asymptotic bias as:

• Asymptotic bias is often easier to calculate than finite-
sample bias, and estimators with zero asymptotic bias are 
at least self-correcting, in the sense that they are correct 
as N —> ∞.

• It is not obvious that an unbiased model probability 
gives an unbiased model average.  But we prove 
the bias on the model average is bounded: 
 
 
 
 
 
assuming that the individual-model estimates <f(a)> 
are consistent (a slightly stronger version of 
asymptotically unbiased.)  In short: unbiased 
model weights give unbiased model averages.
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• Some history: we didn’t bring model 
averaging to lattice, we “added the B” 
(Bayesian MA), found new ICs, and tried to 
clarify statistical derivations/details.


• Several early variations of model averaging/
variation appear in lattice papers: Y. Chen et 
al. ’04, BMW ’08, HPQCD ’08, FNAL/MILC 
’14, BMW ’14…however, many old papers 
use ad hoc averaging prescriptions.


• First use of AIC for lattice is BMW ’15; see 
also CalLat ’18, ’20, Rinaldi et al. ’19.  (More 
refs in our paper, including statistics papers 
back to the ‘70s.)


• First use of AIC with data penalty is BMW 
’21 (although I will argue for a corrected 
version of their formula here.)
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