Summary of PDFLattice 2024

JLab November 18-20, 2024

A. Courtoy, on behalf of the organizers

C. Keppel, A.Kronfeld, H.-W. Lin, E. R. Nocera, F. Olness, J. Qiu

Scope of the workshop

The 2024 edition of the workshop will focus on **uncertainty quantification** in **PDF determinations** from global analyses and lattice computations.

6 key talks on PDF and lattice — state-of-the-art and uncertainty quantification

16 focused talks on PDF and lattice — GPDs, TMDs, FFs, methodology, evolution

10 amazing posters

discussions — always too short

Inverse problem

An inverse problem entails determination of causal factors from the effects or observations they produced.

Antonym: forward problem

- * well-posed problems Hadamard conditions:
 - 1. The problem has a solution
 - 2. The solution is unique
 - 3. The solution's behavior changes continuously with the initial conditions
- * creasons for complexity of inverse problems

direct products convolutional problems Hausdorff moment problem

Inverse problems arise at many steps of our analyses ... baseline of this workshop.

Regression

Entails the definition of an optimization framework with

a loss/objective function

(log-) likelihood and priors or penalties, treatment of systematic uncertainties

* parametric form(s)

model sampling, first principle constraints

- criteria for goodness-of-fit metric, closure tests
- criteria for uncertainty quantification (UQ) spelling out the error budget

This list apply for both the global analyses and lattice.

* experimental data

for fixed target, collider DIS, Tevatron, LHC (with a variety of processes)

~4000 data points for unpolarized PDF

lattice data

for 3-pt correlation function (in necessary ratios...) from various collaborations

~30-50 data points per observable per collaboration

* experimental data

for fixed target, collider DIS, Tevatron, LHC (with a variety of processes)

Kinematics constraints, statistical and systematic uncertainties Correlation among data

* lattice data

for 3-pt correlation function (in necessary ratios...) from various collaborations

Lattice configuration, statistical and systematic uncertainties Correlation among data

* experimental data

for fixed target, collider DIS, Tevatron, LHC (with a variety of processes)

Perturbative QCD framework with factorization theorems.

lattice data

for 3-pt correlation function (in necessary ratios...) from various collaborations

Short-distance factorization, LaMET formalism, Compton amplitudes, good lattice cross section ...

* experimental data

for fixed target, collider DIS, Tevatron, LHC (with a variety of processes)

Perturbative QCD framework with factorization theorems.

Inverse problem analyzed by global QCD analyses practitioners **historically started by experimentalists

lattice data

for 3-pt correlation function (in necessary ratios...) from various collaborations

Short-distance factorization, LaMET formalism, Compton amplitudes, good lattice cross section ...

Inverse problem analyzed by lattice practitioners

Distribution functions

OPE of the hadronic tensor involves

$$j(z)j(0) = \sum_{i,n} C_n^{(i)}(z^2) \, z^{\mu_1} \dots z^{\mu_n} \, \mathcal{O}_{\mu_1 \dots \mu_n}(0)$$

with z on the LC and with \mathcal{O} a 4-field operator

OPE of the spatial correlator, $\tilde{\mathcal{O}}_{\gamma^z}(z,\mu) \propto \bar{\psi}(z) \Gamma U(z,0) \psi(0)$, involves

$$\tilde{\mathcal{O}}_{\gamma^{z}}(z,\mu) \to \sum_{n} C_{n}(\mu^{2}z^{2}) \frac{(-iz)^{n}}{n!} e^{\mu_{1}} e^{\mu_{2}} \cdots e^{\mu_{n}} \mathcal{O}_{\mu_{0}\mu_{1}\cdots\mu_{n}}(\mu)$$

with $z^{\mu} = (0,0,0,z)$ and with \mathcal{O} a 2-field operator

In both cases, the Mellin moments can be found

 $\langle P|O_1^{\mu_0\mu_1\cdots\mu_n}|P\rangle = 2a_{n+1}(\mu)(P^{\mu_0}P^{\mu_1}\dots P^{\mu_n}-\operatorname{trace}).$

Ioffe time, $z \cdot P$, in both OPEs.

Convolutions

To access the *x* dependence of PDFs, we must address convolution problems:

- * Convolution in structure functions Wilson coefficients, etc.
- Convolution in lattice observables Fourier transform and matching conditions, Wilson coefficients etc.
- Could they both be treated in a unique framework of global analyses?

Alternatively:

to access the x dependence of PDFs, we must address the Hausdorff moment problem.

Methodologies to address inverse problems

Buzz words to be defined in a glossary

- Hessian formalism central value+ covariance matrices
- Neural networks bootstrap ("Monte Carlo")
- * Markov Chain Monte Carlo
- * Iterative Monte Carlo with functional form
- Further AI/ML tools Variational Auto Encoder, Deep Neural Network, pixelation,...

Bayesian or frequentist?

Uncertainty budget for lattice

- starts with importance sampling (TBC)
- truncation and model averaging
- agreed upon standards for lattice configurations and validation though not applied in hadron structure
- * display of correlation?

Uncertainty budget for global analyses of exp. data

Partial opinion of the speaker:

- Experimental
- * Theoretical
- * Epistemic:
 - * Methodological
 - Parametrization

includes consideration of all sampling sources, of treatment of tensions...

QCD precision

- * Unpolarized PDF up to (a)N3LO, polarized PDFs and TMDs at NLO, GPDs at LO,... Scale given by the kinematics of the physical process.
- * Lattice available with matching coefficients up to NNLO Scale depends on z — limited to ranges where pQCD is valid. $P_z \rightarrow \infty$ necessary to demonstrate convergence.
- * Collins-Soper kernel studies.
- * Resummation available for lattice, very few global analyses include it.
- * Higher-twist (Λ^2/Q^2) corrections in both formalisms— treated differently

Synergy for the combined analysis of experimental & lattice data

Two main focuses:

- * Mellin moments as integral constraints
- Lattice data (~3-pts correlation function) on the same footing as experimental data
- ** less popular idea: use lattice-extracted LC PDF as direct constraints*

Complementarity of data in extrapolation regions or when data scarce (e.g., transversity, GPDs, ...)

Benchmarking?

- * Lattice: the axial charge as a benchmark example
- * Pheno analyses benchmarked unpolarized PDFs PDF4LHC
- * Benchmark or combined exercise to solve lattice inverse problem with globalfitter tools? And vice versa?
- Would help both sides to get acquainted with limitations, approximations, etc.

Benchmarking?

Reproducing [Gao et al, PRD106] from pheno point of view

0.4 PRELIMINARY 0.3 x*PDF_{NLO}(x) 0.2 Central value $+\sigma$ Bootstrap (68%) 0.1 4-param latt (NNLO) 0.0L 0.0 0.2 0.4 0.6 0.8 1.0 х

2-params, z_{max}=0.68 fm, n=20

[Courtoy, Gao, Nadolsky, Zhao and students, in progress]

Other examples that could be explored?

Original key questions

Accessing PDFs: global analyses and lattice computations

→ How does PDF determination work in global analyses and lattice QCD?

Global QCD analyses: inverse problem and objective functions

→ How is the inverse problem entailed by PDF determination addresed?

Substitution Considerations on the validity of the perturbative matching

 \longrightarrow How is the equivalence between zP_z and ξ^-P^+ defined?

Setting up a common language: definitions and benchmarks

 \rightarrow How to benchmark lattice moments and quasi-/pseudo-PDFs with global analyses?

Combining lattice and experimental data to determine PDFs

→ What are the efforts/limitations to incorporate lattice data in PDF determinations?

Output termination use of the second state of the second state

 \rightarrow How are aleatoric and epistemic uncertainties combined? How is a model chosen?

White Paper

Thanks for the very productive two days of presentations!

Now, let's work on the White Paper. No structure defined yet. We can use tools such as:

- * Initial list of questions
- * Idea of a glossary
- Basics of statistics
- Exemplary observables
- Common exercise (benchmark)
- *