Future Circular Collider (all what you always wanted to know without....)

BSM Forum, August 22, 2024

Christophe Grojean

— on behalf of the FCC team—

christophe.grojean@desy.de)

A good read to start with

FCC-ee: Your Questions Answered

Contribution to the European Particle Physics Strategy Update 2018-2020

(See next page for the list of authors)

Abstract

This document answers in simple terms many FAQs about FCC-ee, including comparisons with other colliders. It complements the FCC-ee CDR [1] and the FCC Physics CDR [2] by addressing many questions from non-experts and clarifying issues raised during the European Strategy symposium in Granada, with a view to informing discussions in the period between now and the final endorsement by the CERN Council in 2020 of the European Strategy Group recommendations. This document will be regularly updated as more questions¹ appear or new information becomes available.

Figure 1: Baseline FCC tunnel layout with a perimeter of 97.5 km, and optimized placement in the Geneva basin, showing the main topographical and geological features.

arXiv:1906.02693v1 [hep-ph] 6 Jun 2019

CG - 2/38

This document is being updated with many new questions for the new European Strategy Update

Future Circular Collider

- A versatile particle collider housed in a 91km underground ring
- Implemented in several stages:
 - an e⁺e⁻ "Higgs/EW/Flavour/top/QCD" factory running at 90-365 GeV
 - followed by a high-energy pp collider reaching 100 TeV

FCC on a Fast Track

After just over a decade of pioneering work, huge progress has been achieved:

- The first proposal of a high-luminosity e⁺e⁻ circular collider to study the Higgs boson was made **thirteen years** ago (December 2011) and submitted to the 2012-13 European Strategy Update [A. Blondel & F. Zimmermann following discussions with P. Janot at CERN cafeteria on a bright 2011 summer night speculating on the rumours of a Higgs at **140 GeV**];
- The Future Circular Collider collaboration was created ten years ago, towards the conceptual design study of a 100 TeV **pp collider**, with an e⁺e⁻ Higgs factory as a potential intermediate step;
- The **Conceptual Design Reports** of the FCC physics case, and of the FCC-ee and FCC-hh colliders, were published **five years** ago and submitted to the 2018-19 European Strategy Update;
- The CERN Council updated the European Strategy **three years** ago, stating that an e⁺e⁻ Higgs factory would be the highest priority next collider, to be followed by a proton-proton collider at the highest achievable energy;
- Two years ago, the CERN Council consequently initiated and funded a technical and financial feasibility study for FCC with focus on an e⁺e⁻ electroweak and Higgs factory as a first stage, study to be completed by the time of the next European Strategy Update;
- Ten months ago, a 700+ pages mid-term report about the FCC feasibility was submitted to the CERN Council for a thorough review, with a conclusion expected at the beginning of 2024. Very positive feedback from CERN council in Feb. 2.

CG - 4/40

FCC-hh tunnel is great for FCC-ee.

- 80-100 km is needed to accelerate pp up to 100 TeV
- 80-100 km is also exactly what is needed
 - to get enough luminosity (5 times more than in 27 km) to maybe get sensitivity to the Higgs self coupling, the electron Yukawa coupling, or sterile neutrinos,
 - to make TeraZ a useful flavour factory,
 - for transverse polarisation to be available all the way to the WW threshold (allowing a precise W mass measurement)
 - for the top threshold to be reached and exceeded.

Precision as a discovery tool.

Many historical examples

- Uranus anomalous trajectory --- Neptune
- Mercury perihelion --- General Relativity
- Z/W interactions to quarks and leptons ---- Higgs boson

Sometimes, these discoveries were expected based on theoretical arguments (e.g. Rayleigh-Jeans UV catastrophe for QM, unitarity breakdown for the Higgs) but precision gave valuable additional clues. In any case, experimentalists shouldn't lean too heavily on theorist priors/prejudices (remember discovery of CP violation).

At times when we don't have a precise theoretical guidance, we need powerful experimental tools to make progress.

The FCC project offers unprecedented opportunities on many different fronts. No LHC/SSC-like no-lose theorem but a promise of making significant steps forward in our understanding of the fundamental laws of Nature.

▶ ...

FCC feasibility study

The launch of the feasibility study.

"An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy."

— CERN council approved the Strategy and CERN management implemented it — FCC Feasibility Study (FS) started in 2021 and will be completed in 2025. Mid-term review in 2023.

Objectives of FCC feasibility study.

- Demonstration of the **geological**, **technical**, **environmental and administrative feasibility** of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure.
- Pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper.
- Optimisation of the design of the **colliders and their injector chains**, supported by R&D to develop the needed key technologies.
- Elaboration of a sustainable **operational model** for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency.
- Development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation.
- Identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee).
- Consolidation of the **physics case and detector concepts** for both colliders.

Optimized placement and layout.

M. Benedikt @ CERN 13.02.24

Layout chosen out of ~ 100 initial variants, based on **geology** and surface constraints (land availability, access to roads, etc.), environment, (protected zones), infrastructure (water, electricity, transport), machine performance etc.

"Avoid-reduce-compensate" principle of EU and French regulations

Overall lowest-risk baseline: 90.7 km ring, 8 surface poims. Whole project now adapted to this placement

Admuth = -10.2" Taire Technical site PL DISS = 2160 m	A (Exponent site) Astrouth = -102 Astrouth = -102 Astr	V. Mertens, J. Gutleber				
SSS = 1400 m (Becontery step) LE PELICS: Technical de Technical de Technical de Technical de	SSS = 1400 m (Recorder Store)	PB: technical				
Plainpalais Plainpalais Châmpel Onex Grand Larcy	a (Experiment alle) Bougeries Thônex Gaillard Étrembier	ge co ^{ce} Ville-la-Grand masse Recolume Crarve Sales Bruchon es				
DER FCC-EE	6 C FUTU GIRO COLL 8	RE JAP UAR IDER Tomes Atthe Bor				
e requirements	~40 ha	PD: experiment				
P (PA, PD, PG, PJ)	1400 m	P.D. experiment				
TECH (PB, PF, PH, PL)	2032 m	Scientifier				
ngth	9.6 km	Pers-Jussy				
of arc lengths	76.9 m	ssous Cornier				
ength	90.7 km					
Saint-Blaise Voyray-en-Bornes		a Chapelle- Rambaud La Koche-Sur- Foron				
19 Donex Data Menthomex en:Bornes	P					
Villy-le-Boiweret	Évirés	The former				
Crusellies		03				
ical Gross						
PG: experiment						

Optimized placement and layout.

M. Benedikt @ CERN 13.02.24

Layout chosen out of ~ 100 initial variants, based on **geology** and surface constraints (land availability, access to roads, etc.), environment, (protected zones), infrastructure (water, electricity, transport), machine performance etc.

"Avoid-reduce-compensate" principle of EU and French regulations

Overall lowest-risk baseline: 90.7 km ring, 8 surface poims. Whole project now adapted to this placement

Optimized placement and layout.

M. Benedikt @ CERN 13.02.24

Layout chosen out of ~ 100 initial variants, based on **geology** and surface constraints (land availability, access to roads, etc.), environment, (protected zones), infrastructure (water, electricity, transport), machine performance etc.

"Avoid-reduce-compensate" principle of EU and French regulations

Overall lowest-risk baseline: 90.7 km ring, 8 surface points. Whole project now adapted to this placement

- Site investigations in areas with uncertain geological conditions:
 - Optimisation of localisation of drilling locations ongoing with site visits since end 2022.
 - Alignment with FR and CH on the process for obtaining autorisation procedures. Ongoing for start of drillings in Q2/2024
- Contracts Status:

CG - 10 / 40

- Contract for engineering services and role of Engineer during works, active since July 2022
- Site investigations tendering ongoing towards contract placement in December 2023 and mobilization from January 2024

August 22, 2024

Environmental considerations.

M. Benedikt @ CERN 13.02.24

- Excavated material from FCC subsurface infrastructures: 6.5 Mm³ in situ, 8.4 Mm³ excavated
- Priority : reuse, minimize disposal
- 2021-2022: International competition "Mining the Future", launched with the support of the EU Horizon 2020 grant, to find innovative and realistic ideas for the reuse of molasse (96% of excavated materials)
- 2023: "OpenSky Laboratory" project: Objective -Develop and test an innovative process to transform sterile "molasse" into fertile soil for agricultural use and afforestation. launched in Jan. 2024: 5500m² near LHC P5 in Cessy (FR). Trial with 5 000t of excavated local molasse → convert it to arable soil (agricultural/forestry)

• Heat:

- heating for local houses
- cheese factories in Jura and Haute-Savoie expressed special interest

Accelerated soil

transformation

with funghi

Connections with local infrastructre.

M. Benedikt @ CERN 13.02.24

CG - 12/40

- Road accesses developed for all 8 surface sites
 - Four possible highway connections defined
 - Less than 4 km new departmental roads required

- Connections to electrical grid
 - loads have no significant impact on grid
 - Powering concept and power rating of the three sub-stations compatible with FCC-hh
 - R&D efforts aiming at further reduction of the energy consumption of FCCee and FCC-hh

Electrical connection concept studied by RTE (French electrical grid operator) \rightarrow requested

August 22, 2024

Civil engineering

O FCC

T. Watson @ Annecy FCC Physics '24

A: 201 m	B: 201 m	D: 181 m	F: 400 m	G: 226 m	H: 235 m	J: 253 m 🔵 FOD: 250 m
A: 201 m	B: 201 m	D: 181 m	F: 400 m	G: 226 M	H: 235 M	J: 253 m C FCC: 250 m

large cavern complex

1:1000

FCC-ee CIVIL ENGINEERING SCHEMATIC LAYOUT

small cavern complex

Civil engineering

T. Watson @ Annecy FCC Physics '24

August 22, 2024

FCC feasibility mid-term report.

- 703 pages: 7 chapters (cost and financial feasibility is a separate document) + refs.
 - Placement scenario (75 pages)
 - Civil engineering (50 pages)
 - Implementation with the host states (45 pages) $oldsymbol{O}$
 - Technical infrastructure (110 pages)
 - FCC-ee collider design and performance (170 pages)
 - FCC-hh accelerator (60 pages)
 - (Cost and financial feasibility)
 - Physics and experiments (110 pages) $oldsymbol{O}$
 - References (70 pages)
- **Executive summary**: 44 pages
- Reviewed by
 - Scientific Advisory Committee and Cost Review Panel on Oct. 16-18
 - Scientific Policy Committee and Financial Committee on Nov. 21-22 $oldsymbol{O}$
 - CERN Council Feb. 2 $oldsymbol{O}$

Future Circular Collider Midterm Report

February 2024

528 authors 6 editors

Edited by

B. Auchmann, W. Bartmann, M. Benedikt, J.P. Burnet, P. Craievich, M. Giovannozzi, C. Grojean, J. Gutleber, K. Hanke, P. Janot, M. Mangano, J. Osborne, J. Poole, T. Raubenheimer, T. Watson, F. Zimmermann

his project has received funding under the European Union's Horizon 2020 research and innovation programme under grant reement No 951754.

This document has been produced by the organisations participating in the FCC feasibility study. The studies and technical concepts presented here do not represent an agreement or commitment of any of CERN's Member States or of the European Union for the construction and operation of an extension to CERN's existing research infrastructures.

The midterm report of the FCC Feasibility Study reflects work in progress and should therefore not be propagated to people who do not have direct access to this document

confidential documents (work in progress) available to CERN personnel

Physics, Experiments, Detectors.

FCC Feasibility Study PED deliverables for mid-term review

8. Physics & Experiments	C. Grojean, P. Janot, M. Mangano	8.1 Overview
		8.2. Documentation of the specificities of the FCC-ee and FCC-hh phys
		8.3 Strategic plans for the improved theoretical calculations.
		8.4 FCC-ee Detector Requirements.

Content of the mid-term PED chapter (60 pages were expected \rightarrow 110 pages delivered)

1	Ove	rview	3
	1.1	FCC-ee: A great Higgs factory, and so much more	4
	1.2	FCC-hh: The energy-frontier collider with the broadest exploration	
		potential	13
2	Spe	cificities of the FCC physics case	15
	2.1	Characterisation of the Higgs boson: role of EW measurements and of	
		FCC-hh	16
	2.2	Discovery landscape	24
	2.3	Flavour advancement	34
	2.4	FCC-hh specificities compared to lepton colliders	36
3	The	oretical calculations	42
	3.1	Electroweak corrections	44
	3.2	QCD precision calculations	46
	3.3	Monte Carlo event generators	50
	3.4	Organization and support of future activities to improve theoretical	
		precision	53

CG - 15/40

4	Det	ector requirements
	4.1	Introduction
	4.2	Machine-detector interface
	4.3	The current detector concepts
	4.4	Measurement of the tracks of charged
	4.5	Requirements on the vertex detector
	4.6	Requirements on charged hadron part
	4.7	Requirements on electromagnetic calc
	4.8	Requirements on the hadronic calorin
	4.9	Requirements on the muon detector
	4.10	Precise timing measurements
5	Out	look and further steps
	5.1	Software and Computing
	5.2	Physics Performance
	5.3	Detector Concepts
	5.4	Centre-of-mass energy calibration, p
		(EPOL)
	5.5	Machine-Detector Interface (MDI) .
	5.6	Physics Programme
		TOOLI

deliverables sics cases. explicitly requested from SPC & Council

																			0-
																		•	54
																		•	55
																			56
ł	ba	rt	icl	le	5														58
																			64
tic	ele	i	de	en	tif	fic	at	ic	n										73
ori	m	et	ry	y															78
ne	te	r																	88
																			93
•	•	•	•	•		•		•	•	•	•	•	•	•	•			•	93
																			96
	•			•							•	•	•		•				98
	•	•		•				•	•		•	•	•	•	•			•	99
				•				•	•		•			•	•			•	101
00	la	ris	sa	ti	on	ι,	m	10	nc	oc	hr	or	na	at	isa	at	io	n	
				•				•	•		•			•	•			•	103
																		•	104
																		•	105
	•			•				•										•	106

August 22, 2024

Physics, Experiments, Detectors.

FCC Feasibility Study PED deliverables for mid-term review

8. Physics & Experiments	C. Grojean, P. Janot, M. Mangano	8.1 Overview
		8.2. Documentation of the specificities of the FCC-ee and FCC-hh phys
		8.3 Strategic plans for the improved theoretical calculations.
		8.4 FCC-ee Detector Requirements.

Content of the mid-term PED chapter

Feedback.

Andy **Parker** (SAC chair), Norbert **Holtkamp** (CRP chair), Hugh **Montgomery** (SPC chair), Laurent Salzarulo (FC chair), Eliezer Rabinovici (Council president) "many thanks for the work done, congratulations for the results, impressive quality of the study..."

"Financial Committee underlines the need to make the project attractive from the physics viewpoint and takes the view that it would be unfortunate to sacrifice the attractiveness of the physics for the sake of reducing costs."

"Si j'ai voulu venir là aujourd'hui c'est pour témoigner ma confiance aux équipes et notre volonté, notre ambition de conserver la première place dans ce domaine." ["My visit here bears witness to my trust in CERN personnel and France's will and ambition to keep the leadership in this domain."] E. Macron, CERN 16.11.2023

US Statement of Intent

Deirdre Mulligan

Fabiola Gianotti

"Should the CERN Member States determine the FCC-ee is likely to be CERN's next world-leading research facility following the highluminosity Large Hadron Collider, the United States intends to collaborate on its construction and physics exploitation, subject to appropriate domestic approvals."

White House, April 26, 2024

The way forward. FCC-ee physics run

FCC-ee Accelerator	Key	/ da	ates	
FCC Feasibility Study Report	2025 -	4	X – 2025	Detector Eol sub
US collider R&D studies	2026 -		- 2026	Europ
rec Approval, Not, start prototyping	2027 –		2027	
ECC Approval R&D start prototyping	2029 -		- 2029 C	EC ³ formation call fo
Completion of HI_I HC: more ATS personnel available	2030 -		- 2030	moletion of HI_IHC up
Start engineering design	2031 -		- 2031	Detector CDRs
Ground-breaking and start civil engineering	2032 -		- 2032	
	2033 –		- 2033	
rechnical design & prototyping completed	2034 –		- 2034	Four detecto
Technical design & prototyping completed	2030 -		- 2036	Four detector to
Start accelerator component production	2037 –		- 2037	Start detector of
	2038 –		- 2038	
	2039 –		- 2039	
Start accelerator installation	2040 -		- 2040	
End of HL-LHC operation	2042 -		- 2041	Start dete
	2043 -		- 2043	
	2044 –		- 2044	
Start accelerator commissioning	2045 -		- 2045	Start detect
	2046 –		_ 2046	
	2047 –		- 2047	

CG - 18/40

August 22, 2024

FCC Feasibility Organisation Chart.

CG - 19/40

• Physics, Experiments and Detectors (PED)

FCC-ee Run Plan.

LEP1 data accumulated in every 2 mn. Exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation)

Working point	Z, years $1-2$	Z, later	WW, years $1-2$	WW, later	ZH
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 10	63	240
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0
$Lumi/year (ab^{-1})$	34	68	4.8	9.6	2.4
Run time (year)	2	2	2	—	3
					1.45×1
Number of events	6×10^1	2 Z	2.4×10^8	WW	+
					45k WW

 $\rightarrow \mathrm{H}$

 $+80 \text{kWW} \rightarrow \text{H}$

August 22, 2024

CG - 22 / 40

Collider Programme (and beyond).

- **Opportunities** beyond the baseline plan (\sqrt{s} below Z, 125GeV, 217GeV; larger integrated lumi...)
- **Opportunities** to exploit FCC facility differently (to be studied more carefully):
 - using the electrons from the injectors for beam-dump experiments,
 - extracting electron beams from the booster, $oldsymbol{O}$
 - reusing the synchrotron radiation photons.

CDR baseline runs (2IPs)

FCC-LS: Powerful light source for very hard X-rays

The peak and average brilliance can be roughly 1000 times higher than at the proposed future storage ring light source PETRA IV in the very hard X ray regime, and coherent wavelengths down by a factor 100, opening up new areas of science.

ultimate photon source at ~100 keV energies

	w/o wiggler	<i>U</i> ₀ x3	<i>U</i> ₀ x94	XFEL	PETRA IV
beam energy [GeV]	20	20	20	17.5	6
average beam current [mA]	50	50	50	0.03	200
bunch population [10 ¹⁰]	2	2	2		
RF voltage [MV]	60	65	190		
beta at wiggler /undulator [m]	1.6	1.6	1.6		
wiggler field [T]		1	1		
wiggler period [cm]	-	4	4		
wiggler unit length [m]	-	6.4	5		
undulator field [T]		0.71-0.32	0.71-0.32	0.44-1.0	0.3-1.1
undulator period [cm]		2.8	2.8	4	1.8
undulator unit length [m]		5	5	5	10
magnetic gap	10	10	10	10	6
energy loss / turn [MeV]	1.33	4	126	-	4
SR power at 0.15 A [MW]	0.2	0.6	19	-	
total length of wiggler [m]	-	6.4	264	-	
horizontal emittance [nm]	0.046	0.015	0.0005	0.04 (slice)	0.02
vertical emittance [pm]	<5	<1.5	<0.05	40 (slice)	4
wiggler photon energy 1 st harmonic [keV]	10-50	10-50	10-50	-	
undulator photon energy 1 st harmonic [keV]	50-100	50-100	50-100	9.1-30.7	7-16.8
coherence limit [Å]	5.8	1.9	0.06	5	1.5
	(2.1 keV)	(6.5 keV)	(200 keV)	(2.5 keV)	(8.3 keV)
peak brilliance [ph/s/0.1%bw/mm²/mrad²]					
@ 12 keV					
@25 keV		4.2x10 ²²	2x10 ²⁵	5x10 ³³	3x10 ²⁴
@50 keV		1.1x10 ²³	7.9x10 ²⁵	4 x10 ³³	1.4x10 ²⁴
@100 keV		1.0x10 ²⁶	3x10 ²⁶	N/A	3.8 x10 ²³
		1.1 x10 ²⁶	5.2x10 ²⁶	N/A	3x10 ²²
average brilliance [ph/s/0.1%bw/mm²/mrad²]					
simulations for the FCC-ee injector with SPECTRA [4]					
@ 12 keV		4.2x10 ²²	8.2x10 ²²	1.6x10 ²⁵	8x10 ²²
@25 keV		1.1x10 ²³	3.2x10 ²³	2.5x10 ²⁴	3.8x10 ²²
@50 keV		2.2x10 ²³	1.2x10 ²⁴	N/A	1 x10 ²²
@100 keV		2.5x10 ²³	2.1x10 ²⁴	N/A	8x10 ²⁰

August 22, 2024

FCC-ee: strong field QED

The FCC-ee injector complex can generate high rates of high-energy photons either by sending bunches from the linac against a target via bremsstrahlung, as in the proposed LUXE experiment [5], or, via laser Compton backscattering off bunches in the booster. These high-energy photons are then collided with low energy photons from a laser and pairs of electrons and positrons are created via the Schwinger process. The intensity of the laser is varied, e.g., between 5×10^{18} W/cm² and 1×10^{20} W/cm² (parameters from LUXE) and the rate of electron/positron pairs is measured as function of this intensity, The rate should be proportional to E^2 e ($-E_s/E$) where *E* is the electric field of the laser.

Comparison of FCC-ee QED explorer configurations and the European XFEL's LUXE proposal.

	LUXE [5]	FCC-ee linac	FCC-ee booster
Beam energy [GeV]	14 (17)	20	20 or 45.6
Conversion	bremsstrahlung	bremsstrahlung	laser Compton (See Table
Bunch charge [nC]	0.25 (1)	3	3 (only fraction converted
Number of bunches	1	2 or 4	up to 16,000
Repetition rate [Hz]	1 (10)	200	3,000
Rms spot size [µm]	5	3 (1 cm β)	30

O FCC

FCC-ee: Explore & Discover.

- **EXPLORE INDIRECTLY** the 10-100 TeV energy scale with precision measurements
 - From the correlated properties of the Z, b, c, τ , W, Higgs, and top particles
 - *At least* to 20-50-fold improved precision on ALL electroweak observables (EWPO) \rightarrow m_Z, m_W, m_{top}, Γ_Z , sin² θ_w^{eff} , R_b, $\alpha_{\text{QED}}(m_Z)$, $\alpha_s(m_Z m_W m_t)$, top EW couplings ...
 - Up to 10 × more precise and model-independent Higgs couplings (width, mass) measurements
 - \rightarrow Access the Higgs potential and infer the vacuum structure of the Universe
 - → Reveals the dynamics of the EW phase transition and infer the fate of the EW vacuum
- **DISCOVER** that the Standard Model does not fit • New Physics! \rightarrow Pattern of deviations may point to the source.
- **DISCOVER** a violation of flavour conservation / universality • $Z \rightarrow \tau \mu$ in 5x10¹² Z decays; $\tau \rightarrow \mu \nu / e \nu$ in 2×10¹¹ τ decays; B⁰ $\rightarrow K^{*0}\tau^{+}\tau^{-}$ or B_S $\rightarrow \tau^{+}\tau^{-}$ in 10¹² bb evts
- **DISCOVER** dark matter, e.g., as invisible decays of Higgs or Z
- **DISCOVER DIRECTLY** elusive (aka feebly-coupled) particles • in the 5-100 GeV mass range, such as right-handed neutrinos, dark photons, light Higgs-like scalars, dilaton, ALPs, relaxions...

PED @ CERN-SPC 2022

Higgs @ FCC-ee.

Central goal of FCC-ee: model-independent measurement of Higgs width and couplings with (<)% precision. Achieved through operation at two energy points.

Sensitivity to both processes very helpful in improving precision on couplings. Complementarity with 365GeV on top of 240GeV improvement factor: $\infty/3/2/1.5/1.2$ on $\kappa_{\lambda}/\kappa_{W}/\kappa_{b}/\kappa_{g}$, $\kappa_{c}/\kappa_{\gamma}$ (plot in bonus) August 22, 2024

Higgs @ FCC-ee.

- Absolute normalisation of couplings (by recoil method). The LHC fit doesn't converge w/o making any assumption.
- Measurement of width (from ZH>ZZZ* and WW>H)
- $\delta\Gamma_H \sim 1\%, \delta m_H \sim 3\,{
 m MeV}$ (resp. 25%, 30 MeV @ HL-LHC)
- Model-independent coupling determination and improvement factor up to 10 compared to LHC
- (Indirect) sensitivity to new physics up to 70 TeV (for maximally strongly coupled models) $(\delta \kappa_X = v^2/f^2 \& m_{\rm NP} = g_{\rm NP}f)$
- Unique access to electron Yukawa

Coupling

Table from mid-term report (new luminosity at 240GeV will further improve the coupling reach, e.g. 0.11% for κZ)

Higgs coupling sensitivity

HL-LHC	FCC-ee $(240-365\mathrm{GeV})$ 2 IPs / 4 IPs
1.5^{*}	$0.43 \ / \ 0.33$
1.3^{*}	0.17 / 0.14
2^*	0.90 / 0.77
1.6^{*}	1.3 / 1.2
10^{*}	10 / 10
_	1.3 / 1.1
3.2^{*}	3.1 / 3.1
2.5^{*}	$0.64 \ / \ 0.56$
4.4^{*}	3.9 / 3.7
1.6^{*}	0.66 / 0.55
1.9^{*}	0.20 / 0.15
4*	1.0 / 0.88

$$\kappa_X = \frac{g_{hXX}}{g_{hXX}^{\rm SM}}$$

Higgs @ FCC-hh.

	\mid ggH (N ³ LO)	$VBF (N^2LO)$	WH (N^2LO)	$ZH (N^2LO)$
N100	24×10^{9}	2.1×10^9	$4.6 imes 10^8$	$3.3 imes 10^8$
N100/N14	180	170	100	110

 $(N100 = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1} \& N14 = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1})$

CG - 30 / 40

- - small systematics

Large rate (> 10^{10} H, > 10^{7} HH) unique sensitivity to rare decays • few % sensitivity to self-coupling Explore extreme phase space: • e.g. 10⁶ H w/ pT>1 TeV clean samples with high S/B

EW Precision Measurements at FCC-ee

Experimental (statistical and systematic) precision of a selection of measurements accessible at FCC-ee, compared with the present world-average precision. FCC-ee syst. scaled down from LEP estimates. Room for improvement with dedicated studies. Note that syst. go down also with stat. (e.g. beam energy determination from $ee \rightarrow Z/\gamma$ thus goes down with luminosity).

Table from mid-term report

Observable	1	oreser	nt	FCC-ee	FCC-ee	Comment and
	value		error	Stat.	Syst.	leading error
$m_Z \ (keV)$	91186700	±	2200	4	100	From Z line shape scan Beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	2495200	±	2300	4	25	From Z line shape scan Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(imes 10^6)$	231480	±	160	2	2.4	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}(m_Z^2)(\times 10^3)$	128952	±	14	3	small	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767	±	25	0.06	0.2-1	Ratio of hadrons to leptons Acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196	±	30	0.1	0.4-1.6	From R_{ℓ}^{Z}
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541	±	37	0.1	4	Peak hadronic cross-section Luminosity measurement
$N_{\nu}(\times 10^3)$	2996	±	7	0.005	1	Z peak cross-sections Luminosity measurement
$R_b (\times 10^6)$	216290	±	660	0.3	< 60	Ratio of $b\bar{b}$ to hadrons Stat. extrapol. from SLD
$\rm A_{FB}^{b}, 0~(\times 10^{4})$	992	±	16	0.02	1-3	b-quark asymmetry at Z pole From jet charge
$\mathrm{A_{FB}^{pol, au}}$ (×10 ⁴)	1498	±	49	0.15	<2	au polarization asymmetry $ au$ decay physics
au lifetime (fs)	290.3	±	0.5	0.001	0.04	Radial alignment
au mass (MeV)	1776.86	±	0.12	0.004	0.04	Momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38	±	0.04	0.0001	0.003	e/μ /hadron separation
$m_W (MeV)$	80350	±	15	0.25	0.3	From WW threshold scan Beam energy calibration
$\Gamma_{\rm W}$ (MeV)	2085	±	42	1.2	0.3	From WW threshold scan Beam energy calibration
$\alpha_{\rm s}({\rm m}_{ m W}^2)(imes 10^4)$	1010	±	270	3	small	From R^W_ℓ
$N_{\nu}(\times 10^3)$	2920	±	50	0.8	small	Ratio of invis. to leptonic in radiative Z returns
$m_{top} (MeV)$	172740	±	500	17	small	From $t\bar{t}$ threshold scan QCD errors dominate
$\Gamma_{\rm top}$ (MeV)	1410	±	190	45	small	From $t\bar{t}$ threshold scan QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2	±	0.3	0.10	small	From $t\bar{t}$ threshold scan QCD errors dominate
ttZ couplings			30%	0.5 - 1.5 %	small	From $\sqrt{s} = 365 \mathrm{GeV} \mathrm{run}$

CG - 31/40

Example of EW measurements @ Tera Z

Abada2019_Article

① ④ 34 / 161
A / 161
<pA / 161</p>
A / 161
A / 161
A / 161
<

read-only to prevent modification

are chosen to optimise the sensitivity to $\alpha_{QED}(m_Z)$, which as shown by [34] can be expected the leptonic forward-backward asymmetry. In the vicinity of the Z pole, $A_{FB}^{\mu\mu}$ exhibits

$$\frac{3}{4}\mathcal{A}_{\rm e}\mathcal{A}_{\mu} \times \left[1 + \frac{8\pi\sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff}\right)^2} \frac{s - m_Z^2}{2s}\right], \xrightarrow{\rightarrow}$$

off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow atistical contract of the contract of th$

the leptonic forward–backward asymmetry. In the vicinity of the Z pole, $A_{FB}^{\mu\mu}$ exhibits a strong \sqrt{s} d

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi \sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff} \right)^2} \frac{s - 2\pi m_Z^2}{2\pi m_Z^2} \right]$$

finited to a relation off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d of to understance in the photon exchange in the photon exc

points, leaving an integrated luminosity of 80 ab^{-1} at the Z pole itself. Because most systematic ur

Tera-Z EW precision measurements.

- The target is to reduce syst. uncertainties to the level of stat. uncertainties. (exploit the large samples and innovative control analyses)
- \triangleright Exquisite \sqrt{s} precision (100keV@Z, 300keV@WW) reduces beam uncertainties
 - ~50 times better precision than LEP/LSD on EW precision observables

(stat. improvement alone is a factor **300-2'000** and innovative analyses/improved detectors can bring syst. down too)

(For the impact of the theory uncertainties on the EW fit, see bonus slides)

Indirect sensitivity to 70TeV-scale sector connected to EW/Higgs

Tera-Z EW precision measurements.

- The target is to reduce syst. uncertainties to the level of stat. uncertainties. (exploit the large samples and innovative control analyses)
- Exquisite \sqrt{s} precision (100keV@Z, 300keV@WW) reduces beam uncertainties
 - ~50 times better precision than LEP/LSD on EW precision observables

(stat. improvement alone is a factor 300-2'000 and innovative analyses/improved detectors can bring syst. down too)

Quantity	Current precision	FCC-ee stat. (syst.) precision	Required theory input	Available calc. in 2019	Needed theory improvement ^{\dagger}
$m_{ m Z}$ $\Gamma_{ m Z}$ $\sin^2 heta_{ m eff}^\ell$	$2.1 \mathrm{MeV}$ $2.3 \mathrm{MeV}$ $1.6 imes 10^{-4}$	0.004 (0.1) MeV 0.004 (0.025) MeV $2(2.4) \times 10^{-6}$	non-resonant $e^+e^- \rightarrow f\bar{f},$ initial-state radiation (ISR)	NLO, ISR logarithms up to 6th order	NNLO for $e^+e^- \rightarrow f\bar{f}$
m_W	$12{ m MeV}$	$0.25 \ (0.3) \mathrm{MeV}$	lineshape of $e^+e^- \rightarrow WW$ near threshold	NLO (ee \rightarrow 4f or EFT frame-work)	NNLO for ee \rightarrow WW, W \rightarrow ff in EFT setup
HZZ coupling		0.2%	cross-sect. for $e^+e^- \rightarrow ZH$	NLO + NNLO QCD	NNLO electroweak
$m_{ m top}$	$100 \mathrm{MeV}$	$17\mathrm{MeV}$	threshold scan $e^+e^- \rightarrow t\bar{t}$	N ³ LO QCD, NNLO EW, resummations up to NNLL	Matching fixed orders with resummations, merging with MC, α_s (input)

Need TH results to fully exploit Tera-Z

[†]The listed needed theory calculations constitute a minimum baseline; additional partial higher-order contributions may also be required.

CG - 33 / 40

Indirect sensitivity to 70TeV-scale sector connected to EW/Higgs

New Physics Reach @ Z-pole.

There are 48 different types of particles that can have tree-level linear interactions to SM.

de Blas, Criado, Perez-Victoria, Santiago, arXiv: 1711.10391

Name	S	\mathcal{S}_1	\mathcal{S}_2	φ	[I]	Ξ_1	Θ_1	Θ_3
Irrep	$(1,1)_{0}$	$(1,1)_1$	$(1,1)_{2}$	$(1,2)_{\frac{1}{2}}$	$(1,3)_0$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
Name	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
Irrep	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$		
Name	Ω_1	Ω_2	Ω_4	Υ	Φ			
Irren	$(6, 1)_{1}$	(6.1)	$(6, 1)_4$	$(6, 3)_1$	$(8, 2)_1$			

ame	N	E	Δ_1	Δ_3	Σ	Σ_1	
rep	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-\frac{1}{2}}$	$(1,2)_{-\frac{3}{2}}$	$(1,3)_{0}$	$(1,3)_{-1}$	
		5	-			-	-
	U	D	Q_1	Q.	Q_7	T_1	T_2
ine	U		≪L 1	\$3	-01	- 1	- 2

Scalars

Fermions

They are not all affecting EW observables at tree-level.

Vectors

New Physics Reach @ Z-pole.

There are 48 different types of particles that can have tree-level linear interactions to SM.

They are not all affecting EW observables at tree-level. However, all, but a few, have leading log. running into EW observables.

Allwicher, McCullough, Renner, arXiv: 2408.03992

Scalars

Fermions

Tree-level matching and running from 1 TeV to Z mass. W- and Z-pole observables only (no Higgs, no LEP-2 like observables)

Vectors

August 22, 2024

	Working point Lumi. /	$IP [10^{34} cm^{-2}]$	$^{-1}$] Total l	umi. (2 IPs)	Rur
Flavo	Z second hase		■ 26 a 52 a	b^{-1} /year b^{-1} /year	
At prese	ent (Z/h/NewPhysics	s) FCNCs m	lostly cons	strained b	y low
N N	The large statis	stics of FCC	will open	on-shell	oppo
		0		0	
で L L L し し 、 、 、 、 、 、 、 、 、 、 、 、 、	Particle production (10°)	$B^{0} B^{0} / \overline{B}^{0}$	B^+ / B^-	$B_s^0 \ / \ \overline{B}_s^0 \ / \ \Lambda$	$\Lambda_b \ / \ \overline{\Lambda}_b$
JINC	Belle II	27.5	27.5	n/a	n/a
lav	FCC-ee	300	300	80	80
іі — — — — — — — — — — — — — — — — — —					
inte	Decay mode/Experiment	Belle II $(50/ab)$	LHCb Run I	LHCb Upgr.	$(50/\mathrm{fb})$
M	EW/H penguins $B_{0} = K^{*}(200) \pm -$	2000	150	٢٥٥٥	
Ω.	$\mathcal{B}^{0} \to K^{*}(892)e^{+}e^{-}$ $\mathcal{B}(B^{0} \to K^{*}(892)\tau^{+}\tau^{-})$	~ 2000 ~ 10	~ 150	~ 5000 _	
99	$B_s \to \mu^+ \mu^-$	n/a	~ 15	~ 500	
	$B^{0} \to \mu^{+}\mu^{-}$ $\mathcal{B}(B \to \tau^{+}\tau^{-})$	~ 5	_	~ 50	
	$\frac{\mathcal{D}(\mathcal{D}_s \neq I = I)}{\text{Leptonic decays}}$				
out of reach	$B^+ \to \mu^+ \nu_{mu}$	5%	—	_	
	$B^+ \to \tau^+ \nu_{tau}$	7%	_		
al LHCD/Belle	$B_c^+ \to \tau^+ \nu_{tau}$	n/a	—		
	CP / hadronic decays $B^0 \rightarrow I/\Psi K_G (\sigma \cdot (\sigma \cdot \tau))$	$\sim 2 * 10^6 (0.008)$	41500(0.04)	$\sim 0.8 \cdot 10^{6}$ (0.01)
	$B_s \to D_s^{\pm} K^{\mp}$	n/a	6000	~ 20000	0
	$B_s(B^0) \xrightarrow{s} J/\Psi \phi \ (\sigma_{\phi_s} \text{ rad})$	n'a	$96000\ (0.049)$	$\sim 2.10^6 \; (0.$	(800)

CG - 35 / 40

n time Physics goal

2 2 2 150 ab⁻¹ v energy observables. ortunities.

FCC-ee

 $\sim 35 \cdot 10^6 \ (0.006)$ $\sim 30 \cdot 10^6$ $16 \cdot 10^6 \ (0.003)$

boosted b's/ τ 's

at FCC-ee

Makes possible a topological rec. of the decays w/ miss. energy

		Working po	oint	Lumi.	/ IP	$[10^{34} \text{ cm}^{-2}]$	[-1] '	Total l	umi. (2 IP	s) R	Run
	VO	f st p						26 a	b^{-1} /year		
		Z second \Box	nase			200		$52~\mathrm{a}$	b^{-1} /vear		
	At prese	ent (Z/h/ľ	Vew	^{>} hysic	cs) F	-CNCs n	nostly	cons	strained	by lo	CW
		The		e otot	iotic			0000	on oho		
ç		The		je stat	ISUC		۷۷۱۱۱ د ۲۰ ۰	open	ON-SNE		
Ŋ											
@F(Particle	produ	ction (1	.09)	$B^0 \ / \ \overline{B}^0$	B^+ /	B^-	$B^0_s \ / \ \overline{B}^0_s$	Λ_b /	$\overline{\Lambda}_b$
Inc			Belle	II		27.5	27.	5	n/a	n/	a
avc			ee		300	300)	80)	
Ĕ											
lteil		Decay m	ode/Ex	periment	B	elle II (50/ab)	LHC) Run I	LHCh Upg	r (50/f	h)
IOI		$\overline{\frac{\text{EW}/H}{\text{EW}/H}}$	penguin	s	D						
N.		$B^0 \xrightarrow{\prime} K$	$B^0 \to K^*(892)e^+e^-$			~ 2000	\sim	150	~ 50	00	
S e e e		$\mathcal{B}(B^0 \rightarrow \mu)$ $B_s \rightarrow \mu$	<u> </u>	$()_{\sigma^+\sigma^-}$	F	lavour @		l vs B	elle/nn		
	/	$\begin{array}{c} B^{0} \rightarrow \mu \\ \mathcal{B}(B - \mu) \end{array}$			•						
		$\frac{\mathcal{L}(\mathcal{D}_{s})}{\text{Leptoni}}$	At	tribute	Э				$\Upsilon(4S)$	pp	2
out of r	each	$B^+ ightarrow$,	Al	l hadro	on sr	oecies				1	,
at I HCh		$ B^+ \rightarrow 1 $	Hi	gh boo	st					1	
		CP / h	Бу			aduction (ross	oction			
		$B^0 ightarrow J$		11 1	is pr		1055-50	ection		v	
		$B_s \rightarrow I_B$	IN 6	egligibl	e tri	gger losses	5		~		
		$D_s(D^{\perp})$	Lo	w back	grou	inds			✓		,
Flavour	defines	shared (verte	xing, tr	acki	ng, calorir	netry)	and s	specific	(hadr	'n
CG - 35 / 41	0	L									

Physics goal time

2 $150 { m ~ab^{-1}}$ energy observables. rtunities.

FCC-ee

boosted b's/ τ 's

at FCC-ee

Makes possible a topological rec. of the decays w/ miss. energy

August 22, 2024

ic PID) detector requirements.

FCC-ee flavour opportunities.

- **CKM element V**_{cb} (critical for normalising the Unitarity Triangle) from WW decays
- **Tau physics** (>10¹¹ pairs of tau's produced in Z decays)
 - test of lepton flavour universality: G_F from tau decays @ 10 ppm @ FCC-ee (0.5 ppm from muon decays)
 - lepton flavour violation:
 - $\tau \rightarrow \mu \gamma$: 4x10⁻⁸ @Belle2021 \rightarrow 10⁻⁹ @ FCC-ee
 - ► $\tau \rightarrow 3\mu$: 2x10⁻⁸ @Belle \rightarrow 3x10⁻¹⁰ @BelleII \rightarrow 10⁻¹¹ @ FCC-ee
 - tau lifetime uncertainty:
 - ► 2000 ppm → 10 ppm
 - tau mass uncertainty: $oldsymbol{O}$
 - ▶ 70 ppm → 14 ppm
- Semi-leptonic mixing asymmetries a^ssl and a^dsl

Resonance production.

Protons are made of 5 quarks, gluons, photons, W/Z

FCC-hh effectively collides 196 different initial states = perfect exploratory machine

FCC-hh allows the direct exploration of new physics at energy scales up to 40 TeV, including physics that may be indirectly indicated by precision Higgs and EW measurements at FCC-ee.

CG - 37 / 40

Pushing limits of SUSY.

Plot from arXiv:1606.00947

Plot from arXiv:1605.08744 and arXiv:1504.07617

15-20TeV squarks/gluinos require kinematic threshold 30-40TeV: FCC-hh is more than a \sqrt{s} ~10TeV factory

CG - 38 / 40

Factor 10 increase on the HL-LHC limits.

Synergy ee⇔hh.

FCC-hh without ee could bound BR_{inv} but it could say nothing about BR_{untagged} (FCC-ee needed for absolute normalisation of Higgs couplings)

(uncertainty drops in ratio)

Subsequently, the 1% sensitivity on tth is essential to determine h^3 at O(5%) at FCC-hh

Let history repeat itself.

In the meantime, on the LHC machine side...

1991 December CERN Council: 'LHC is the right machine for advance of the subject and the future of CERN' (thanks to the great push by DG C Rubbia)

1993 December proposal of LHC with commissioning in 2002

Minister Boris Saltykov and DG Carlo Rubbia signing an updated Cooperation Agreement Russia and CERN (28 June 1993)

COMETA Colloquium, 27-5-2024 Peter Jenni (Freiburg and CERN)

CG-40/40

P. Jenni, May 27, 2024

2028 December CERN Council: 'FCC is the right machine for advance of the subject and the future of CERN' (thanks to the great push by DG F. Gianotti)

