
Modeling of coasting beams in Xsuite

G. Iadarola

Acknowledgements:
H. Bartosik, R. De Maria, S.Lopaciuk, K. Paraschou

Outline

• Introduction

o Particle slippage

o Implications for collective effects

• Simulation method description

o Reference speed bsim

o From turns to frames

o Algorithm step bu step

• Mathematical description

o Propositions on time time of arrivals

o Justification of the method

o Generalization of z coordinate

o z update at start turn

o z update on frame jump

o Numerical tests

2

Particle slippage

In a ring the particles revolution frequency depends on the on the particle energy.

To first order, this dependence is described by the slip factor:

3

In bunched beams, the momentum of the particles oscillates around the equilibrium
momentum:

• The average revolution period (over a synchrotron period) is the same for all particles

• The differences in time of arrival among particles never exceeds one revolution period

• Over a given time interval, all particles make the same number of turns

→ The turn index can be used as independent variable in the simulation

Particle slippage

In a ring the particles revolution frequency depends on the on the particle energy.

To first order, this dependence is described by the slip factor:

4

In coasting beams, there is no RF focusing:

• Particles keep their momentum deviation indefinitely

• Hence, differences in revolution frequency are also kept indefinitely

• Over a given time interval, different particles perform a different number of turns

5

Dfrev = 0

Dfrev < 0

Dfrev > 0

Particle slippage

• To visualize this effect, in the case of a coasting beam, we compare three
particles having three different revolution frequencies by marking the times
at which they are detected at a given location of the ring

6

• To visualize this effect, in the case of a coasting beam, we compare three
particles having three different revolution frequencies by marking the times
at which they are detected at a given location of the ring

o Over a given time interval, the three particles perform a different
number of revolutions

80 revolutions

Dfrev = 0

76 revolutions

Dfrev < 0

84 revolutions

Dfrev > 0

Particle slippage

• To visualize this effect, in the case of a coasting beam, we compare three
particles having three different revolution frequencies by marking the times
at which they are detected at a given location of the ring

o Over a given time interval, the three particles perform a different
number of revolutions

7

80 revolutions

Dfrev = 0

76 revolutions

Dfrev < 0

84 revolutions

Dfrev > 0
The fast particle can be seen twice in the same turn!

The slow particle “skips” some turns!

Particle slippage

8

In conventional tracking simulations we use the longitudinal coordinate s and the
turn number as independent variables of our simulations

o At a given simulation stage all particles have travelled the same distance, but in
the case of coasting beams their arrival time can be several turns apart

This creates an issue for the simulation of collective effects.

o For example, to compute space charge forces on a particle we need to know the
position of all the other particles at the same time. Same for getting distribution
moments in wakefield simulations.

80 revolutions

Dfrev = 0

76 revolutions

Dfrev < 0

84 revolutions

Dfrev > 0

Particle slippage

9

80 revolutions

Dfrev = 0

76 revolutions

Dfrev < 0

84 revolutions

Dfrev > 0

One radical solution to this problem would be to change simulation approach and use
time as independent variable:

• While conceptually simple, it would extremely heavy in terms of development
effort and very expensive in terms of follow-up and maintenance (it’s basically
another code)

• Instead, we have devised a method allowing us to reuse without changes our
conventional simulation modules (tracking elements, space-charge, wakefields, etc.)
while achieving the required synchronization for collective effects

o The implementation turns out to be quite simple and confined in a dedicated
module (great advantage to preserve Xsuite extendibility and maintainability)

o The derivation is a bit cumbersome, so bear with me…

In conventional tracking simulations we use the longitudinal coordinate s and the
turn number as independent variables of our simulations

o At a given simulation stage all particles have travelled the same distance, but in
the case of coasting beams their arrival time can be several turns apart

This creates an issue for the simulation of collective effects.

o For example, to compute space charge forces on a particle we need to know the
position of all the other particles at the same time. Same for getting distribution
moments in wakefield simulations.

Particle slippage

Outline

• Introduction

o Particle slippage

o Implications for collective effects

• Simulation method description

o Reference speed bsim

o From turns to frames

o Algorithm step bu step

• Mathematical description

o Propositions on time time of arrivals

o Justification of the method

o Generalization of z coordinate

o z update at start turn

o z update on frame jump

o Numerical tests

10

Speed measured on the reference trajectory

Then we choose a ”reference speed” bsim such that for all particles

i. e. No particle moves faster than bsim

i. e. No particle moves slower bsim / 2

Easy to find: bsim = 1.1 b0 works practically for any storage ring

Reference simulation speed

In a nutshell, what we will do in the following is to use bsim as reference velocity

→ Particles can be too slow (skip a turn) but not too fast (arrive twice in a turn)

Note that in the following of this presentation, if we replace bsim with b0 we get back the
definitions and relations used for bunched beams.

We define for each particles:

• We call frame a time interval of length:

• The mid point of each frame depends on the s position and is defined by
the passage of the virtual particle at the given s:

From turns to time frames

.

We use a “virtual particle” moving at the “reference speed” bsim on the reference
trajectory to generalize the concept of turn:

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

• The time frames act as the turns of the
bunched beam case:

o For each frame we track particles
around the ring

o We compute forces due to collective
effects only for the present frame

• We need to ensure that at each collective
interaction we pass to the collective
elements all particles arriving during the
present time frame (independently of their
number of performed revolutions)

• For this purpose, we install in front of each
collective element, a “SyncTime” element

o The SyncTime takes care of disabling
particles that fall out of the current
time frame (arrive too late) and re-
enabling them at the following frame

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

Method

s=0

Collective
element

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

• Some particles are found to arrive too
late, outside F0(s)

→ these particles are deactivated

SyncTime

SyncTime

Method

s=0

Collective
element

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

• Some particles are found to arrive too
late, outside F0(s)

→ these particles are deactivated

• The active particles are taken into
account by the collective element

SyncTime

SyncTime

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

• Some particles are found to arrive too
late, outside F0(s)

→ these particles are deactivated

• The active particles are taken into
account by the collective element

• The active particles are tracked to the
next collective location where the
same procedure takes place

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

• Some particles are found to arrive too
late, outside F0(s)

→ these particles are deactivated

• The active particles are taken into
account by the collective element

• The active particles are tracked to the
next collective location where the
same procedure takes place

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

• Some particles are found to arrive too
late, outside F0(s)

→ these particles are deactivated

• The active particles are taken into
account by the collective element

• The active particles are tracked to the
next collective location where the same
procedure takes place

• Tracking continues to the end of the ring

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

• Some particles are found to arrive too
late, outside F0(s)

→ these particles are deactivated

• The active particles are taken into
account by the collective element

• The active particles are tracked to the
next collective location where the same
procedure takes place

• Tracking continues to the end of the ring

Method

s=L

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 0

We start by simulating frame F0(s):

• We track particles from the start of the
ring to the first SyncTime elements

• Some particles are found to arrive too
late, outside F0(s)

→ these particles are deactivated

• The active particles are taken into
account by the collective element

• The active particles are tracked to the
next collective location where the same
procedure takes place

• Tracking continues to the end of the ring

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 1

Simuation of frame F1(s):

• At the start of each turn the z coordinate
needs to be updated (see later)

• We track active partilces to the first
SyncTime element

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 1

Simuation of frame F1(s):

• At the start of each turn the z coordinate
needs to be updated (see later)

• We track active partilces to the first
SyncTime element

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 1

Simuation of frame F1(s):

• At the start of each turn the z coordinate
needs to be updated (see later)

• We track active partilces to the first
SyncTime element

o Particles that arrived too late in F0(s)
are now reactivated for F1(s)→ z

needs to be updated (see later)

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 1

Simuation of frame F1(s):

• At the start of each turn the z coordinate
needs to be updated (see later)

• We track active partilces to the first
SyncTime element

o Particles that arrived too late in F0(s)
are now reactivated for F1(s)→ z

needs to be updated (see later)

o Particles arriving too late for F1(s) are
deactivated

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 1

Simuation of frame F1(s):

• At the start of each turn the z coordinate
needs to be updated (see later)

• We track active partilces to the first
SyncTime element

o Particles that arrived too late in F0(s)
are now reactivated for F1(s)→ z

needs to be updated (see later)

o Particles arriving too late for F1(s) are
deactivated

• And so on…

Method

s=0

Collective
element

SyncTime

SyncTime

Collective
element

Frame n = 1

Simuation of frame F1(s):

• At the start of each turn the z coordinate
needs to be updated (see later)

• We track active partilces to the first
SyncTime element

o Particles that arrived too late in F0(s)
are now reactivated for F1(s)→ z

needs to be updated (see later)

o Particles arriving too late for F1(s) are
deactivated

• And so on…

Outline

• Introduction

o Particle slippage

o Implications for collective effects

• Simulation method description

o Reference speed bsim

o From turns to frames

o Algorithm step bu step

• Mathematical description

o Propositions on time time of arrivals

o Justification of the method

o Generalization of z coordinate

o z update at start turn

o z update on frame jump

o Numerical tests

29

Propositions on particles arrival times

The procedure illustrated so far can be rigorously justified mathematically. Full
derivation available in the Xsuite Physics Guide.

A central role is played by the following two propositions:

In the following I give you a glimpse of the proof…

https://xsuite.readthedocs.io/en/latest/physicsguide.html

Proof of proposition 1

Reminders:

We prove an auxiliary result:

Cobining the two:

Another relation that we will use:

Proof of proposition 1

We want to prove:

Reminders:

or equivalently:

This proves the upper bound.

Proof of proposition 1

We want to prove:

Reminders:

or equivalently:

This proves the upper bound.
The proof for the lower bound is very similar and

can be found on the Xsuite Physics Manual

https://xsuite.readthedocs.io/en/latest/physicsguide.html

How these proofs justify the simulation procedure

Prop. 1:

• We detect that the particle is not in the current
frame Fn(s) at s=sa

• We know from Prop. 1 that the particles is
already in the next frame

• We know from Prop. 1 that for s > sa:

Prop. 2:

• We know from Prop. 2 for s < sa:

s=0

sa

s=L

Frame jump!

This is exacty what we do in the simulator!

Outline

• Introduction

o Particle slippage

o Implications for collective effects

• Simulation method description

o Reference speed bsim

o From turns to frames

o Algorithm step bu step

• Mathematical description

o Propositions on time time of arrivals

o Justification of the method

o Generalization of z coordinate

o z update at start turn

o z update on frame jump

o Numerical tests

35

Generalization of the zeta coordinate

Reminder on usual definitions (bunched beams)

In Xsuite (as in all beam dynamics codes) we don’t use t to track the
particle arrival time. We instead use z defined as:

where S is the total traveled length
on the reference trajectory:

Combining the relations above we obtain:

Generalization to coasting beams:

For coasting beam we define z as:

Time within the frame

Time within the turn

Reminder

Zeta update at start of turn

End of turn n (s=L):

Start of turn n+1 (s=0):

One of the implications of our definition of z is that we need to update z at the
start of each turn:

Reminder:

Subtracting one from the other we obtain the update equation:

Conditions on zeta for arrival time in the current frame

We can prove(1) the following condition for the arrival time of a particle to be in
the current frame Fn(s):

where:

(1) Proof: Reminder:

Zeta update on frame jump

Reminder:

where:

Particles arrive out of the current frame (arrive too late) and jump to the next when:

As discussed, the particle is stopped, and its tracking is resumed when handling frame (n+1)

• When this happens the z coordinates needs to be updated:

Subtracting one from the other we obtain the update equation:

Outline

• Introduction

o Particle slippage

o Implications for collective effects

• Simulation method description

o Reference speed bsim

o From turns to frames

o Algorithm step bu step

• Mathematical description

o Propositions on time time of arrivals

o Justification of the method

o Generalization of z coordinate

o z update at start turn

o z update on frame jump

o Numerical tests

40

Test simulations

Test case:
Ekin = 160 MeV
RF off

CERN PS Booster
Full lattice

Tracking a beam with an artificially large momentum spread we can clearly see that
different particles perform a different number of revolution over the simulated time.

42

f_nominal (on momentum): 991.96599 kHz
f_measured (off momentum): 991.96599 Hz

Test simulations – measuring the revolution frequency

The beam is generated with d = 0

We track a beam with no momentum spread, and we introduce a perturbation
on the beam line density.

→ As there is no slippage, the perturbation is observed at each turn

→ It is possible to measure the revolution frequency by extracting the main
Fourier component of the longitudinal profile (using nafflib)

43

The beam is generated with d = -0.01

f_nominal (on momentum): 991.966 kHz
f_expected (off momentum): 985.271 kHz
f_measured (off momentum): 985.271 kHz

Test simulations – measuring the revolution frequency

We track a beam with no momentum spread, and we introduce a perturbation
on the beam line density.

→ As there is no slippage, the perturbation is observed at each turn

→ It is possible to measure the revolution frequency by extracting the main
Fourier component of the longitudinal profile (using nafflib)

44

The beam is generated with d = +0.01

f_nominal (on momentum): 991.966 kHz
f_expected (off momentum): 998.580 kHz
f_measured (off momentum): 998.581 kHz

Test simulations – measuring the revolution frequency

Frequency obtained from the line density agrees very well with expected one ☺

We track a beam with no momentum spread, and we introduce a perturbation
on the beam line density.

→ As there is no slippage, the perturbation is observed at each turn

→ It is possible to measure the revolution frequency by extracting the main
Fourier component of the longitudinal profile (using nafflib)

45

Summary and outlook

A method has been devised to simulate coasting beams with tracking codes that
use the reference path length s as independent variable

→ The different revolution frequency among particles is accurately modeled

The method has been implemented in Xsuite:

• No modifications in the conventional tracking elements

• Time synchronization of particles is achieved by installing dedicated SyncTime
elements in front of the collective elements (e.g. space charge, impedances)

Planned applications include:

• PSB with space charge (benchmark of coasting beam experiments)

• Fermilab IOTA ring with space charge

• ISIS-2 stability studies

46

Thanks for your attention!

47

