
Archiving, Reporting and DB locking
(Scheduler DB)
Jaroslav Guenther (IT-SD-TAB)
31/S-028
04.07.2024

1

Local test run setup

2Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Setup with Postgres Scheduler DB
• dev VM 2xlarge (16 VCPU, ~28GB RAM)
• catalogue Postgres container
• scheduler Postgres DBOD (dbod-pgscheddb.cern.ch)
• CI containerised deployment (tpsrv01, tpsrv02, ctaeos, ...)

CI Setup
• CI VM xlarge (8 VCPU, ~14GB RAM)
• catalogue Oracle

(devdbs2-rac16-scan.cern.ch:10121/castorint.cern.ch)
• scheduler Objectstore (cephkelly.cern.ch)
• CI containerised deployment (tpsrv01, tpsrv02, ctaeos, ...)

Local test run comparison

3Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Archive Workflow (think 1 DB table)
• updating set of rows to take ownership

• rows locked only for write (default UPDATE lock used only)
• when mount picks new set of jobs
• when DiskReportRunner picks new set of jobs

• incomplete reporting
• only successful jobs reported, crash otherwise

• 10 000 files in 1 directory each 15kB (client_archive.sh)

Objectstore backend
• same test
Starting at 1720138107
Copying files to /eos/ctaeos/preprod/87c2cb38-2ba7-4edc-ae01-6c1d9e01fa75/0 using 100 processes...
10000/10000 archived checked within 3 seconds, current timestamp 1720138205

Starting at 1720159352
Copying files to /eos/ctaeos/preprod/4d8c60e8-7c1d-4166-9446-4a03feff43cd/0 using 100 processes...
10000/10000 archived checked within 2 seconds, current timestamp 1720159456

comparable overall
throughput

 ~ 100 ± 10 Hz

(creation_time - last_update_time)
~ 0.5 ± 0.3 sec/job

Archiving workflow

4Jaroslav Guenther | CERN Tape Scheduling Systems

... step by step !

04 July 2024

Archiving workflow - insert & mount poll

5Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Insert
archiveFileID
tape VID

Tape Server Polling
deciding to mount

 Table View
• just a query saved query
• executed every poll !
• expensive for large tables
• optimisation options

➡ PG has materialised view
- refresh by query every 30 sec
- refresh by pg_cron extension

➡ custom counter implementation (insert - pop & xcheck)

Archiving workflow - file transfer

6Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Tape Server Polling
• deciding to mount

Tape Server Polling
• ingesting job queue

 Job selection for processing
• update first 500 jobs

• where MOUNT_ID IS NULL (aka not owned)
• status == 'AJS_ToTransferForUser'

• updates mount_ID and VID
• then use the JOB_IDs returned to run

a separate SELECT to get all the job info
(query not shown here)

TapeWriteTask
• writes the file to tape

italics = thread

Archiving workflow - reporting 1/3

7Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

TapeWriteTask
• at successful write
• reports job to MigrationReportPacker

• tape file: size, checksum,

MigrationReportPacker thread
• collects all reports
• calls ArchiveMount::reportJobsBatchTransferred()

• validates the success
• checks disk/tape checksum, file size etc.
• if OK calls ArchiveMount::setJobBatchTransferred ()
• and 'SchedulerDB'::updateJobStatus()

italics = thread

Archiving workflow - reporting 2/3

8Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

MigrationReportPacker
• 'SchedulerDB'::updateJobStatus()

:STATUS ='AJS_ToReportToUserForTransfer'

DiskReportRunner - now at any tape server
• collects all reports (failed and successful)
• for successes picks up the jobs

with status
'AJS_ToReportToUserForTransfer'

italics = thread

9Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

DiskReportRunner
now at any tape server

• mark jobs with
'AJS_ToReportToUserForTransfer' status
as IS_REPORTING and returning job IDs

• SELECT job info by jobID list

:STATUS ='AJS_Completed'

• calls Scheduler.reportArchiveJobsBatch()
• reports status back to EOS
• setArchvieJobBatchReported()

Archiving workflow - reporting 3/3
• then use the JOB_IDs returned to run

a separate SELECT to get all the job info
(query not shown here)

10Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Archive job queue schema 1/3

has extra index

initialised to 'AJS_ToTransferForUser' at insert

no use so far - we have jobID, one job per row

set to 0 at insert

11Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Archive job queue schema 2/3

to be understood once
I start dealing with failed jobs
and failed reports

added since it is very useful for debugging
and might be useful dealing with dangling
owned jobs without active mounts

ing

is_reporting - marks reports taken
by DiskReportRunner

12Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Archive job report - placeholder
ARCHIVE_JOB_REPORTS
• contains all other fields currently

not of use for the archiving workflow,
but found in Objectstore implementation

• might be useful to avoid locking the ARCHIVE_JOB_QUEUE
• but if we lock rows we might not need it !

--> see locking further

13Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Archive job queue schema 3/3

Locking Optimisations

14Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Update use-cases for Locking

Jaroslav Guenther | CERN Tape Scheduling Systems 15

Archive queue ingestion:
• mount ownership: mount_id, vid updates
MigrationReportPacker:
• finished transfer, ready for report
DiskReportRunner:
• tape server report ownership

(could be replaced by new insert)
• completed report update

04 July 2024

Options for avoiding interference by:
• new inserts to another table
• ensure deterministic select statements
• all access table locks
• row write lock

• could work fine if we do not mind
duplicate state updates second tape
server updates still all initially selected
rows !

• or + set stricter transaction isolation
preventing read

• but then we have error thrown (often)
on any conflict & retry foreseen !

• advisory lock + smart logic on the side of
the code

• ...

https://www.postgresql.org/docs/current/mvcc.html

PostgreSQL Locking

Jaroslav Guenther | CERN Tape Scheduling Systems 16

Explicit Locking:
(where MVCC is not enough)
• session or transaction level
• Advisory locks

• our software controls the concurrency
• Table/Row level locks
• Deadlocks

• automatically resolved by aborting one of
the transactions

MVCC Transaction Isolation Levels:
• Read committed (default)

• e.g. SELECTs within same txn can
see different data from different
commits (but only committed)

• Repeatable read
• e.g. SELECTs within same txn see

only the same data
(freeze at txn start)

• Serialisable
• emulates serial transaction

execution for all committed
transactions

• in case of conflict → ERROR
• txn must be retried

04 July 2024

https://www.postgresql.org/docs/current/mvcc.html

PostgreSQL MVCC

Jaroslav Guenther | CERN Tape Scheduling Systems 17

txn can read
uncommitted
data

txn re-reads
row data with
different result

txn re-executes
row search
with different result

result of set of txn
commits inconsistent
with any order if ran
one at a time

default - no reason to change for the moment
possible in PG

04 July 2024

PostgreSQL Explicit Advisory Locks

Jaroslav Guenther | CERN Tape Scheduling Systems 18

Advisory Locks
• Transaction or Session level

• we control the concurrency from the code by the assigned/requested lock ID

Session 1:
admin=> -- Acquires a lock ID 321
admin=> SELECT pg_advisory_lock(321);
 pg_advisory_lock

(1 row)
admin=> INSERT INTO TAPE_MOUNTS (MOUNT_ID)
VALUES (1);
INSERT 0 1
admin=> SELECT pg_advisory_unlock(321);
 pg_advisory_unlock

 t
(1 row)

Session 2:
admin=> -- Attempt to acquire lock ID 321
(will block until Session 1 releases it)
admin=> SELECT pg_advisory_lock(321);
SELECT * FROM TAPE_MOUNTS;
[-- waiting for Session 1 to release it --]

[-- Session 1 released the lock 321 --]
 pg_advisory_lock

(1 row)
admin=> SELECT * FROM TAPE_MOUNTS;
 mount_id | creation_time |
----------+-------------------------------|
 1 | 2024-06-18 10:25:47.448468+02 |
(1 row)

04 July 2024

PostgreSQL Explicit Table Locks

Jaroslav Guenther | CERN Tape Scheduling Systems 19

Table Locks
• each query will have automatic lock with minimal protection provided
• we can explicitly acquire locks in addition
• throw error in case of conflict
• Session 1:
admin=> BEGIN;
BEGIN
admin=*> LOCK TABLE TAPE_MOUNTS
IN ACCESS EXCLUSIVE MODE;
LOCK TABLE
[.. WORK BEING DONE ...]
admin=*> COMMIT;
COMMIT
admin=>

Session 2:
admin=> select * from tape_mounts;

[-- waiting for Session 1 to commit --]

 mount_id | owner
----------+---------
 1 | me
(1 row)

admin=>

04 July 2024

• other modes:
• ACCESS SHARE = SELECT lock, only reads allowed
• ...

PostgreSQL Row Explicit Locks

Jaroslav Guenther | CERN Tape Scheduling Systems 20

Row Locks
• FOR UPDATE blocks other writers, not readers = default for UPDATE operation !
• to block readers we may add SERIALIZABLE or REPEATABLE READ transaction isolation
Session 1:
admin=> BEGIN;
BEGIN
admin=*> SELECT * from tape_mounts where
mount_id=1 FOR UPDATE;
 mount_id | owner
----------+---------
 1 | me
(1 row)

admin=*> UPDATE tape_mounts set mount_id=2
where mount_id=1;
UPDATE 1

admin=*> COMMIT;
COMMIT

Session 2:
admin=> BEGIN;
BEGIN
admin=*> SELECT * from tape_mounts
where mount_id=2 FOR UPDATE;
 mount_id | owner
----------+-------
 2 | you
(1 row)
admin=*> SELECT * from tape_mounts
where mount_id=1 FOR UPDATE;

[-- waiting for Session 1 to commit --]

 mount_id | owner
----------+-------
(0 rows)
admin=> 04 July 2024

Backup

21Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Postgres DB Management Challenges
MVCC (Multi-Version Concurrency Control)
• consistent "snapshot" views
• keeps all row versions until the oldest active

transaction or next automatic vacuuming

Power cut & Recovery
• Incomplete transactions and vacuuming may cause

long lockdowns (~1 hour) to replay WAL
• risk of data inconsistency or corruption, prevention

DBOD
• ideal for performance testing, realistic latency (RTT)
• ensure SSDs are used to avoid random access issues
& beware of implicit transactions without auto-commit
 keeping all history !

PostgreSQL config options:

Write-Ahead Log (WAL) settings

wal_level = replica
synchronous_commit = on
wal_sync_method = fsync

Checkpoints

checkpoint_timeout = 5min
checkpoint_completion_target = 0.7
max_wal_size = 1GB

Point-in-Time Recovery

archive_mode = on
archive_command = 'cp %p /path/to/archive/%f'

Streaming Replication

wal_level = replica
max_wal_senders = 5
wal_keep_segments = 32

Autovacuum (for MVCC cleanup)

autovacuum = on
autovacuum_naptime = 1min
autovacuum_vacuum_threshold = 50
autovacuum_analyze_threshold = 50

... etc.

22Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Management of Completed Job Records
Vacuuming
• table scan + version replay + row deletion + reindexing
• gradually reclaims disk space
• slower, can lock large tables (especially: VACUUM FULL)

Double Buffering + Truncate Table
• use two identical tables, switch between them
• avoids extended lock periods during maintenance
• consistent data access
• Truncate obsolete table:

• no table scan or history replay checks
• fast row removal
• immediately reclaims disk space

 TO BE MEASURED !

23Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

https://www.postgresql.org/docs/current/sql-truncate.html

CTA Receiving a Request

user

EOSCTA disk buffer
CTA front-end server

daemon: cta-frontend
XrdSsi / gRPC service:
listening WFE

synchronous
call per file

Scheduler backend
ObjectStore
Postgres DB

request read
write file close

insert a file
transfer job info

archiveFileID
/ tape VID

classes:
• Scheduler

• SchedulerDatabase
• OStoreDB
• rdbms/RelationalDB

job = one file transfer

EOS MGM
xrootd thread:
WorkFlow Engineack.

Transient request data and their changes

24Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

CTA Tape Server polling 1/2
CTA tape server (TS)

Tape Drives (TD)
process: DriveProcess
 (child DriveHandler) . . .

DataTransferSession forked for a free drive (UP)
• tries to get new (/its own) Mount
• Mount = drive assignment to tape for set of jobs
• calls Scheduler → getNextMount[-DryRun]()

• SchedulerDatabase → fetchMountInfo()

daemon: 1 taped
 per tape drive

job = one file transfer

Each taped looks at all jobs for all drives
 to get all (existing/hypothetical) Mounts
 + iterates through → match drive with tape and job set
 (1st w/o global lock [-DryRun] + 2nd time with)

improve perf if needed
• look up only TD relevant info
• lock only what needs to be

locked

25Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

CTA Tape Server polling 2/2
DataTransferSession
• getting Mounts by polling Scheduler DB and Catalogue

• Scheduler → getNextMount[-DryRun]()

Catalogue
• Mount Policy
• Drive Status
• etc. ...

Scheduler DB
• for all jobs

/ queues

ExistingMounts

PotentialMounts

Scheduler.
sortAndGetTapesForMountInfo()
match drive with
[VO, priority, mount type
Archive/Retrieve/..., tape VID,
request age, job summary statistics]

SchedulerDatabase
updates
mountID, VID per job

TapeMount

tape file namespace and permanent
system data and its state changes

26Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

CTA Tape Drive with Mount
DataTransferSession
• calls executeWrite/Read(TapeMount)

• several threads are spawned taking care of:
• mounting the tape
• polling Scheduler DB for job/queue

batches
• inserting the jobs to for the execution
• the R/W from/to memory/tape/disk buffer
• MigrationReportPacker thread reporting

back to CTA disk buffer (EOS)
(TBD for PGSCHED)

Consistency & Error Handling (TBD for PGSCHED)
• TapeDaemon/MaintenanceHandler x-check job "heartbeat" in Scheduler DB
• Scheduler DB "view" on active [VID + mountID] → DriveState check (in the Catalogue) ?

aka object ownership
concept in ObjectStore

27Jaroslav Guenther | CERN Tape Scheduling Systems

threads handle
work of any tape drive

04 July 2024

CTA Scheduler Relational DB
Implementation

• workflow oriented tables, views, sequences
• file transfer jobs (Archive/Retrieve/Report/...)

• inherently uses DB features
• facilitates any job ordering (FIFO/non-FIFO)

locking & MVCC, indexing (+sync), B trees, etc.
• connection pools from our rdbms wrapper layer
• currently single threaded interface to DB

Intentional straightforward code development

• ensures high performance IF DB features exploited smartly
(e.g. do not ask to count rows, write pop/delete counters)

• requires optimisation efforts per use-case
• relies on the dev diligence with DB queries and DB admin tuning

28Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

CTA Scheduling Operations last year
ObjectStore Experience

• fire-fighting
• 5 high priority dev tickets created in the last year

• object deletion #309
• empty shard handling #500
• infinite loops #602
• locking issues #460
• repack exhausting OStore resources #573

• challenges
• non-FIFO priority queues
• object structure ("schema") updates
• CTA Scheduler code logic not easy to extend/modify

tailored to ObjectStore backend structure (handling object dependencies)

Relational DB

29Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

https://gitlab.cern.ch/cta/CTA/-/issues/309
https://gitlab.cern.ch/cta/CTA/-/issues/500
https://gitlab.cern.ch/cta/CTA/-/issues/602
https://gitlab.cern.ch/cta/CTA/-/issues/460
https://gitlab.cern.ch/cta/CTA/-/issues/573

CTA Request Ingestion

ObjectStore
• summary objects including

regularly updated counters

• locking + multi-threaded access

• EOS MGM → cta-frontend ingestion
one by one

Each taped looks at all jobs for all drives
 to get all (existing/hypothetical) Mounts
 (+ 1st w/o global lock (DryRun) 2nd time with)

Relational DB
• table views and counters

(counters to be implemented if needed,
 we can avoid counting rows in queries)

• MVCC, explicit table/row locks, advisory locks
(more about this later ...)

 smart locking might save us the DryRun
• idea of bulk inserts if needed

(hold set of WFE requests until all in DB)

30Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

Tape Drive Efficiency and Data Integrity
Tape Free Space
• vendor tape raw capacity understated

• by 1-5%, ~450 GB (?), stable over time or decreasing ?
• tape drive writes until hitting tape end !

• flush tape writes in bunches of 200 files / ~32 GB (hard-coded)
• last incomplete batch → failure; time spent writing today ?

• cost-effective (tape is cheap and drives fast today)
• "waste" max space and time writing 32 GB per tape << extra free space

Tape Head Position Check
• there is a SCSI command to query tape drive position

• avoids unnecessary flushes (Eric's idea)
• IBM's approval needed to confirm read head position

is indicative of what the write head wrote !

Fine-tuning not worth
the effort today !

summer student study ?

31Jaroslav Guenther | CERN Tape Scheduling Systems 04 July 2024

home.cern

