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Recap



Algorithm 1

e Scheduling graphs of many
tasks with dependencies on
an assortment of “workers”

e Test the viability of Julia for /
HEP software stacks

e Let Dagger. jl handle the Algo. 2| | Algo. 3 | | Algo. 4

s AW,

e Build it with parallel,
heterogeneous computing in Data 4 | | Data 5
mind

Data 1 Data 2 Data 3
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Data Dependencies



Treatment of data

Algorithm and data nodes treated equally - not ideal!

DTask DTask
Algo. Data T» Algo.

Dagger requires this to recognize dependence.
Further, the data generated did not match the graph metadata
specifications.
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Graph structures

A graph with topology

Data Algo.

Algo.

!

Data Algo.

would actually get treated like

Algo.

Algo. Data

!

Algo.

]
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Dagger datadeps

Dagger provides the function spawn_datadeps() to handle
mutable arguments and dependencies:

Dagger.spawn_datadeps() do
Dagger. add!(InOut(B), In(A))
Dagger. copyto!(out(C), In(B))
end

This ensures the second task runs after the first.
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All data as arguments

Rather than using the function output, treat all outputs as mutable
arguments.

Dagger.spawn_datadeps() do
for v in vertices
Dagger. algorithm(
In.(inputs)...,
Out.(outputs)...)

end
end
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All data as arguments

Rather than using the function output, treat all outputs as mutable
arguments.

Dagger.spawn_datadeps() do
for v in vertices
Dagger. algorithm(
In.(inputs)...,
Out.(outputs)...)
end
end

Now we just need to produce something meaningful!
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DataObjects with metadata

To utilize the graph metadata, we package everything in structs
mutable struct DataObject

data

size::UInt
end

function algorithm(inputs..., outputs...)
for output in outputs
output.data = zeros(Int8, output.size)

end
end
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Scheduling with discretion

Rather than scheduling data nodes, we populate them with
DataObjects up front.

for v in data_vertices
size = get_prop(graph, v, :size)
data = DataObject(nothing, size)
set_prop!(graph, v, :res_data, data)
end

Dagger.spawn_datadeps() do
for v in alg_vertices
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Problems solved!

With those additions, we've taken care of:
v transfering only the data we need,
v generating realistic data, and
v only scheduling algorithms.
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Problems solved!

With those additions, we've taken care of:
v transfering only the data we need,
v generating realistic data, and
v only scheduling algorithms.

Unless...
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All of it was unusable.
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Datadeps revisited

What they don't tell you

Beyond the docs and in the source code, one finds
function spawn_datadeps(f::Base.Callable)
“At the end of executing f, spawn_datadeps will wait for all

launched tasks to complete, rethrowing the first error, if any.
The result of f will be returned from spawn_datadeps.”

Josh Ott Gra Scheduling on Hete ous Resources

9/m



Datadeps revisited

What they don't tell you

Beyond the docs and in the source code, one finds
function spawn_datadeps(f::Base.Callable)

“At the end of executing f, spawn_datadeps will wait for all
launched tasks to complete, rethrowing the first error, if any.
The result of f will be returned from spawn_datadeps.”

Asynchronicity is crucial, so this will not do.
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Lessons

e Few alternatives to this approach

e Until a Dagger update changes this behavior, data dependencies
are on the backburner.
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Lessons

e Few alternatives to this approach

e Until a Dagger update changes this behavior, data dependencies
are on the backburner.

To be continued!
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Travel!
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Thanks :)
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