Graph-based Task Scheduling on
Heterogeneous Resources
An update

@

E{'N

Josh Ott

North Carolina State University

July 25, 2024

Recap

Algorithm 1

e Scheduling graphs of many
tasks with dependencies on
an assortment of “workers”

e Test the viability of Julia for /
HEP software stacks

e Let Dagger. jl handle the Algo. 2| | Algo. 3 | | Algo. 4

s AW,

e Build it with parallel,
heterogeneous computing in Data 4 | | Data 5
mind

Data 1 Data 2 Data 3

Josh Ott

1/m

Data Dependencies

Treatment of data

Algorithm and data nodes treated equally - not ideal!

DTask DTask
Algo. Data T» Algo.

Dagger requires this to recognize dependence.
Further, the data generated did not match the graph metadata
specifications.

Josh Ott Gra Scheduling on Hete ous Resources 2/ 1

Graph structures

A graph with topology

Data Algo.

Algo.

!

Data Algo.

would actually get treated like

Algo.

Algo. Data

!

Algo.

]
2

Josh Ott G ch ng on neous Resources 3/m

Dagger datadeps

Dagger provides the function spawn_datadeps() to handle
mutable arguments and dependencies:

Dagger.spawn_datadeps() do
Dagger. add!(InOut(B), In(A))
Dagger. copyto!(out(C), In(B))
end

This ensures the second task runs after the first.

Josh Ott Grap k Scheduling on Het ous Resources 40 M

All data as arguments

Rather than using the function output, treat all outputs as mutable
arguments.

Dagger.spawn_datadeps() do
for v in vertices
Dagger. algorithm(
In.(inputs)...,
Out.(outputs)...)

end
end

Josh Ott 5/M

All data as arguments

Rather than using the function output, treat all outputs as mutable
arguments.

Dagger.spawn_datadeps() do
for v in vertices
Dagger. algorithm(
In.(inputs)...,
Out.(outputs)...)
end
end

Now we just need to produce something meaningful!

Josh Ott 5/M

DataObjects with metadata

To utilize the graph metadata, we package everything in structs
mutable struct DataObject

data

size::UInt
end

function algorithm(inputs..., outputs...)
for output in outputs
output.data = zeros(Int8, output.size)

end
end

Josh Ott

6/Mm

Scheduling with discretion

Rather than scheduling data nodes, we populate them with
DataObjects up front.

for v in data_vertices
size = get_prop(graph, v, :size)
data = DataObject(nothing, size)
set_prop!(graph, v, :res_data, data)
end

Dagger.spawn_datadeps() do
for v in alg_vertices

7/m

Josh Ott

Problems solved!

With those additions, we've taken care of:
v transfering only the data we need,
v generating realistic data, and
v only scheduling algorithms.

Josh Ott 8/m

Problems solved!

With those additions, we've taken care of:
v transfering only the data we need,
v generating realistic data, and
v only scheduling algorithms.

Unless...

Josh Ott 8/m

All of it was unusable.

Graph-based Task Scheduling on Heterogeneous Resources

Datadeps revisited

What they don't tell you

Beyond the docs and in the source code, one finds
function spawn_datadeps(f::Base.Callable)
“At the end of executing f, spawn_datadeps will wait for all

launched tasks to complete, rethrowing the first error, if any.
The result of f will be returned from spawn_datadeps.”

Josh Ott Gra Scheduling on Hete ous Resources

9/m

Datadeps revisited

What they don't tell you

Beyond the docs and in the source code, one finds
function spawn_datadeps(f::Base.Callable)

“At the end of executing f, spawn_datadeps will wait for all
launched tasks to complete, rethrowing the first error, if any.
The result of f will be returned from spawn_datadeps.”

Asynchronicity is crucial, so this will not do.

Josh Ott Gra Scheduling on Hete ous Resources

9/m

Lessons

e Few alternatives to this approach

e Until a Dagger update changes this behavior, data dependencies
are on the backburner.

Josh Ott 10/ 1

Lessons

e Few alternatives to this approach

e Until a Dagger update changes this behavior, data dependencies
are on the backburner.

To be continued!

Josh Ott 10/ 1

Travel!

Josh Ott

Thanks :)

Graph-based Task Scheduling on Heterogeneous Resources

	Recap
	Data Dependencies

