Eliminating Coffee Breaks at CERN: ROOT Histogram
Performance Improvements using GPUs and Batching

Kevin Nobel (University of Amsterdam) . ata Analysis Framework
CERN Summer Student in EP-SFT

Supervisors: Monica Dessole (CERN) and Jolly Chen (University of Twente)

Histogram of x2+y?
Stats

. [Histogramming | . ‘Eﬂﬂi—
. . Generate — Add Bin Update - Transfer ::Z;
[Trigger]—)[Load Bulk]—)[Filter]—) (Aéddltlonal) » Find Bin > Content —> Stats —» Histogram m{m;_
g olumns L | JRS Result) -
2 "3
Figure 1. Typical HEP analysis workflow in ROOT. ::Zf:
Figure 2. Example of a 1D ROOT histogram.
Introduction Optimizations
ROOT [1] is an open-source C++ data analysis framework widely used) .) .
in High Energy Physics (HEP) to efficiently analyze petabytes of data. [CPU] Event Trigger Event Trigger
A typical HEP analysis (figure 1) generally consists of filtering data, - .Draw() - .Draw()
producing new columns from existing data and computing histograms GPU
(ﬁgure 2) ' & ' &
Data Transfer| | Load Bulk | ' Load Bulk |
Motivation ¢ ¢
With the upcomming High Luminostiy LHC upgrade, the intensity is [Filter (x # 0)] [Transfer Bulk]
expected to increase by a factor of 30 [2], leading to a similar increase ¢ ¢
in data to be analyzed. In the future, more computing power is needed . N
to meet the demands of HEP experiments. Generate Filter (x # 0)
. Columns
Accelerators like GPUs are increasingly common in modern - g ¢
computing infrastructure. Making use of the full capabilities of ¢ Generate
heterogeneous systems is an implicit requirement for the ROOT [Transfer Bulk] Columns
framework. Current stable versions of ROOT only support CPU ¢ ¢
parallelism to compute histograms.
. L . : : Find Bins Find Bins
The goal of this project is to develop efficient batch histogramming
implementations in ROOT that make use of GPUs. ¢ ¢
Update Bins Update Bins
ROOT Code Example ¢ ¢
The ROOT code in listing 1T shows how multiple 1D histograms can Update Stats Update Stats
be generated from a single RDataFrame. In this example, the data is ¢ l / ¢ l /
filtered and 4 virtual columns are defined. Based on the newly defined § . p .
columns, 4 histograms are generated. T;ansi]er TI;anster
i esult i esult
: ROOT: :RDataFrame df (dataSource, bulkSize); (a) Only histogramming (b) Most of the
.auto dfFiltered = df.Filter("x != 0") on GPU. workflow on GPU.
4 .Define("vO0", "x + y")
5 .Define("v1", "xxx + y") Figure 3. High-level overview of two implementations for heterogeneous
6 .Define("v2", "x + y*y") architectures.
7 .Define("v3", "x*xx + y*xy");
slauto h0 = dfFiltered.HistolD<double>("v0"); Implementation A (fig 3a): Only implements a parallel histogramming
iolauto hl = dfFiltered.HistolD<double>("v1"); kernel on the GPU:
i1lauto h2 = dfFiltered.HistolD<double>("v2"); . . .
s auto h3 = dfFiltered.HistolD<double>("v3"); = Filter and column generation still performed on the CPU.
- H0->Draw ()« hi->Draw(): ho->Draw(): h3->Dray () = Four columns must be transferred from CPU to GPU (v, v, v2 and
14 ->Draw () ; ->Draw () ; ->Draw () ; ->Draw () ;

Ug) .

Listing 1. Example ROOT code to generate 4 histograms.

Implementation B (fig 3b): Moves the filtering and column generation
to the GPU:

= No computation performed on the CPU.
[1] R. Brun, F. Rademakers, P. Canal, et al., ROOT, version v6-18-02, Jun. 2020. DoI: = Only two columns must be transferred from CPU to GPU (q; and y)

10 . 5281 do . . |Online]. Available: https: //doi. 10 . 5281
Zgn05d08 323?81200 3695860 | | ps : //dot . org/ /" s Increased computational intensity (data transfer vs computation)

[2] HEP Software Foundation, J. Albrecht, A. A. Alves, et al., “A roadmap for HEP on the GPU.
software and computing R&D for the 2020s,” Computing and software for big
science, vol. 3, pp. 1-49, 2019.

References

N kevin.nobel@cern.ch CERN Summer Student Poster Session 25 July 2024

https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
mailto:kevin.nobel@cern.ch

	References

