
Eliminating Coffee Breaks at CERN: ROOT Histogram
Performance Improvements using GPUs and Batching
Kevin Nobel (University of Amsterdam)
CERN Summer Student in EP-SFT
Supervisors: Monica Dessole (CERN) and Jolly Chen (University of Twente)

FilterTrigger Load Bulk
Generate

(Additional)
Columns

Find Bin Add Bin
Content

Update
Stats

Transfer
Histogram

Result

Histogramming

Figure 1. Typical HEP analysis workflow in ROOT.

Figure 2. Example of a 1D ROOT histogram.

Introduction

ROOT [1] is an open-source C++ data analysis framework widely used
in High Energy Physics (HEP) to efficiently analyze petabytes of data.
A typical HEP analysis (figure 1) generally consists of filtering data,
producing new columns fromexisting data and computing histograms
(figure 2).

Motivation

With the upcomming High Luminostiy LHC upgrade, the intensity is
expected to increase by a factor of 30 [2], leading to a similar increase
in data to be analyzed. In the future, more computing power is needed
to meet the demands of HEP experiments.

Accelerators like GPUs are increasingly common in modern
computing infrastructure. Making use of the full capabilities of
heterogeneous systems is an implicit requirement for the ROOT
framework. Current stable versions of ROOT only support CPU
parallelism to compute histograms.

The goal of this project is to develop efficient batch histogramming
implementations in ROOT that make use of GPUs.

ROOT Code Example

The ROOT code in listing 1 shows how multiple 1D histograms can
be generated from a single RDataFrame. In this example, the data is
filtered and 4 virtual columns are defined. Based on the newly defined
columns, 4 histograms are generated.

1 ROOT::RDataFrame df(dataSource , bulkSize);
2

3 auto dfFiltered = df.Filter("x != 0")
4 .Define("v0", "x + y")
5 .Define("v1", "x*x + y")
6 .Define("v2", "x + y*y")
7 .Define("v3", "x*x + y*y");
8

9 auto h0 = dfFiltered.Histo1D <double >("v0");
10 auto h1 = dfFiltered.Histo1D <double >("v1");
11 auto h2 = dfFiltered.Histo1D <double >("v2");
12 auto h3 = dfFiltered.Histo1D <double >("v3");
13

14 h0->Draw(); h1->Draw(); h2->Draw(); h3->Draw();

Listing 1. Example ROOT code to generate 4 histograms.

References

[1] R. Brun, F. Rademakers, P. Canal, et al., ROOT, version v6-18-02, Jun. 2020. DOI:
10.5281/zenodo.3895860. [Online]. Available: https://doi.org/10.5281/
zenodo.3895860.

[2] HEP Software Foundation, J. Albrecht, A. A. Alves, et al., “A roadmap for HEP
software and computing R&D for the 2020s,” Computing and software for big
science, vol. 3, pp. 1–49, 2019.

Optimizations

GPU

CPU

Data Transfer

Event Trigger
.Draw()

Load Bulk

Generate
Columns

Transfer Bulk

Find Bins

Update Bins

Update Stats

Transfer
Result

Filter (x ≠ 0)

(a) Only histogramming
on GPU.

Event Trigger
.Draw()

Load Bulk

Transfer Bulk

Filter (x ≠ 0)

Generate
Columns

Find Bins

Update Bins

Update Stats

Transfer
Result

(b) Most of the
workflow on GPU.

Figure 3. High-level overview of two implementations for heterogeneous
architectures.

Implementation A (fig 3a): Only implements a parallel histogramming
kernel on the GPU:

Filter and column generation still performed on the CPU.
Four columns must be transferred from CPU to GPU (v0, v1, v2 and
v3).

Implementation B (fig 3b): Moves the filtering and column generation
to the GPU:

No computation performed on the CPU.
Only two columns must be transferred from CPU to GPU (x and y).
Increased computational intensity (data transfer vs computation)
on the GPU.

Envelope kevin.nobel@cern.ch CERN Summer Student Poster Session 25 July 2024

https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
mailto:kevin.nobel@cern.ch

	References

