

Towards a New Lepton Flavour Universality Test with Baryons: $\Lambda_b^0 \to \Lambda_c^{*+} D_s^{(*)-}$

Pamela Llerena¹ Supervisors: Anna Lupato, Federica Borgato, Gabriele Simi and Marcello Rotondo

¹Escuela Politécnica Nacional, Quito, Ecuador

Introduction

$\Lambda_c^+ \pi \pi$ structure

- The Standard Model predicts Lepton Flavour Universality (LFU), meaning all lepton flavors should interact with equal strength. Testing LFU involves comparing the ratios of branching fractions in leptonic and semi-leptonic decays, and any deviation from equality would indicate new physics beyond the Standard Model.

- Testing LFU with semileptonic $\Lambda_b \to \Lambda_c^*$ decays $(\Lambda_c^* \to \Lambda_c^+, \Lambda_c^+ = \Lambda_c (2595, 2625)^+)$ can help verify current anomalies observed in decays involving charmed mesons. This can be achieved by measuring the ratio $R(\Lambda_c^*) = \frac{B(\Lambda_b \to \Lambda_c^{*+} \tau \bar{\nu}_{\tau})}{B(\Lambda_b \to \Lambda_c^{*+} \mu \bar{\nu}_{\mu})}$ - We can evaluate the $\Lambda_b \rightarrow \Lambda_c^{*+} \tau \bar{\nu}_{\tau}$ decay by

Figure 1. Decay channel.

studying its dominant background, which is the $\Lambda_b^0 \to \Lambda_c^{*+} D_s^{(*)-}$ channel, with the D_s decaying to $\kappa^{+}\kappa^{-}\pi^{-}.$

- These decays are of interest as they provide an opportunity to study the nature of the $\Lambda_c(2595)^+$ and $\Lambda_c(2625)^+$ states. Additionally, this branching ratio has never been calculated before.

Selection

Λ_b^0 Selection:

- The decays of b quark hadrons can be identified from other inelastic pp interactions by detecting a secondary vertex and particles with high transverse momentum (p_T) .

- The Λ_h^0 must be located downstream from the primary vertex (PPV).

D_s Selection:

- The D_s vertex must be positioned downstream of the Λ_h^0 vertex along the beam direction, with a significance of 4σ .

Λ_c^+ and Λ_c^* Selection:

- The transverse momentum of the two pions forming the Λ_c^* must exceed 350 MeV/c.

- The Λ_c^+ must have a high transverse momentum and a mass close to its known value.

- These selection criteria were defined based on the Monte Carlo truth from simulated samples, ensuring the correct simulated sample was used.

Stripping line and DaVinci selection

StrippingInclusiveCharmBaryons_LcLine selection				
	Particle	Stripping Selection		
	$p K^-$ Combination Cut	ADOCA(1,2) < 0.5 mm	1	
		ASUM(PT) > 1800 MeV	1	
		$ADAMASS(\Lambda_c^+) < 50 MeV$		
		$ADOCA(p,\pi) < 0.5 \text{ mm}$		
	$m K^{-} \pi^{+}$ Combination Cut	$ADOCA(K,\pi) < 0.5 \text{ mm}$		
	<i>p K n</i> Combination Cut	Presence of daughter with:		
		TRCHI2DOF < 4		
		PT > 500 MeV		
		P > 5000 MeV		
		CHI2VXNDF < 10	1	
	A^{\pm} solution	BPVVDCHI2 > 36		
	ADN ADN	BPVDIRA > 0		
		$\text{ADMASS}(\Lambda_c^+) < 32 \text{ MeV}$		
	Filter on Λ_c^+	$Lc_BDT > 0.45$		

Particle	DaVinci Selection
	P > 1000 MeV
	PT>100 MeV
$/\nu^+$ from D^-	PROBNNpi> 0.2 / PROBNNk> 0.2
π /K ⁻ from D_s	MIPCHI2DV(PRIMARY)> 4
	TRCHI2DOF< 4
	TRGHP < 0.4
	AMASS < 2.1 GeV
K^+/K^- combination from D_s^-	ACHI2DOCA< 20
	ADOCA < 0.4 mm
π^{-}/K^{\pm} combination from D^{-}	ACHI2DOCA< 20
π / K^{-} combination from D_s	ADOCA < 0.5 mm
	$ADAMASS(D_s) < 80 MeV$
	PT>600MeV
	P > 12 GeV
$D^- \rightarrow K^+ K^- \pi^-$	CHI2VXNDF< 40
$D_s \rightarrow K K \pi$	BPVVDCHI2> 8
	$\operatorname{CHILDIP}(K^{-}) < 3 \ \mathrm{mm}$
	$\operatorname{CHILDIP}(K^+) < 3 \ \mathrm{mm}$
	$CHILDIP(\pi) < 5 mm$
$\Lambda_c^+ o p K^- \pi^+$	all from InclusiveCharmBaryons_LcLine stripping line
π^{\pm} from Λ^{*+}	TRGHP < 0.6
	PT>100 MeV
$\Lambda^{*+} \rightarrow \Lambda^+ \pi^+ \pi^-$	$ADAMASS(\Lambda_c(2625)) < 500 \text{ MeV}$
	VFASPF(VCHI2/VDOF)< 10
	$AM \in [4700; 6500] MeV$
$\Lambda^0_{\cdot} \rightarrow \Lambda^{*+} D^-$	VFASPF(VCHI2/VDOF) < 10
$b \sim c \sim s$	BPVIPCHI2() < 25
	BPVDIRA > 0.999

Histogram of $M(\Lambda_b)$ vs $M(\Lambda_c^{*+}) - M(\Lambda_c^{+})$.

Histogram of $\Lambda_c^+\pi^-$ invariant mass.

Extracting Λ_c^* **Yields**

A preliminary fit on $M(\Lambda_c^{*+}) - M(\Lambda_c^{+})$ has been done. The blue line represents the overall fit to the data. The green curve shows the fit for the $\Lambda_c(2625)$ signal, modeled with a double Gaussian. The yellow one is the fit for the $\Lambda_c(2595)$ signal modeled as a Gaussian convoluted with resolution effects. The red curve shows the background, modeled with the Argus PDF for random combinations, while the purple curve represents the real Σ_c with a pion.

Figure 3. Fit of $M(\Lambda_c^{*+}) - M(\Lambda_c^{+})$.

Project objectives

- Study the shape of the Λ_c^* system decaying into $\Lambda_c^+ \pi^+ \pi^-$.
- Understand the background due to other charmed baryons such as $\Lambda_b^0 \to \Sigma_c \pi D_s$, where $\Sigma_c \to \Lambda_c^+ \pi$.
- Develop an optimized Λ_h^0 and Λ_c^* selection.
- Create simultaneous fit that clearly distinguishes between the signal and the background of the two Λ_c^+ resonances.

$\Lambda_b^0 \to \Lambda_c^* D_s^{(*)}$ Yields and Ratio of the Branching Fraction

 $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+(2625)D_s)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+(2595)D_s)} = \frac{N(\Lambda_b^0 \to \Lambda_c^+(2625)D_s)}{N(\Lambda_b^0 \to \Lambda_c^+(2595)D_s)} \times \frac{\epsilon(\Lambda_b^0 \to \Lambda_c^+(2595)D_s)}{\epsilon(\Lambda_b^0 \to \Lambda_c^+(2625)D_s)}$

• Extract the ratios $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+(2625)D_s)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+(2595)D_s)}$ and $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^*D_s)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^*\pi)}$, where \mathcal{B} is the branching fraction.

$\Lambda_c^+ \pi \pi$ structure

Conclusion

- We will continue our efforts on a two-dimensional fit involving $M(\Lambda_b)$ versus $M(\Lambda_c^{*+}) M(\Lambda_c^{+})$ to extract the event $\Lambda_h^0 \to \Lambda_c^{*+} D_s^{*-}$.
- For the fit of the Λ_{k}^{0} invariant mass, a Breit-Wigner function or a double Crystal Ball function can be use to model the mass distribution of the event of interest.
- This is a work in progress, and further refinements will be made as the team continue with the analysis.