The role of Time Advancing LHCb ECAL Upgrade II Clustering

Gabriel Garcia Asensio Supervised by Núria Valls

1. Actual ECAL besides the future Upgrade II

- Purpose: Efficient reconstruction of photons, precise measurement of photon energy and position, and particle identification, especially electrons.
- Features: Scintillating sampling calorimeter providing good energy resolution and stable performance [1].
- Geometry: The actual ECAL Consists of modules with varying cell sizes $(4x4 \text{ cm}^2, 6x6 \text{ cm}^2, 12x12 \text{ cm}^2).$
- Energy Resolution: $\sigma(E)/E = 10\%/\sqrt{E} \oplus 1\%$, achieving about 9 MeV/ c^2 for $\pi 0$ mass resolution [1].

Actual methods and hardware

- New Modules: Implementation of SpaCal technology with tungsten and lead absorbers.
- Cell Sizes: Introduction of smaller cells (1.5x1.5cm², 3x3 cm²) for better granularity, covering regions with high photon and neutral pion production.

Proposition of cells

Motivation for the upgrade

- Increased Luminosity: To handle up to 1.5×10^{34} cm⁻²s⁻¹, requiring major redesign.
- Radiation Damage: Current modules suffer performance degradation under high radiation, necessitating replacement and improvement (LHCB-TDR-024).
- Measurement Capabilities: New cells will measure both energy and time, improving the overall performance of the ECAL.
- Improved Radiation Tolerance: New SpaCal modules offer better resistance to radiation damage [2].

Energy Collection

•Mechanism: The current ECAL collects energy through a shashlik structure with alternating scintillator tiles and lead absorber layers. •Readout: Scintillation light is read by photomultipliers (PMTs).

•Reconstruction: Energy is digitized with a 12-bit precision, converted to MeV, and transverse energy is computed based on angular position.

Data Reconstruction

3. How can we use time in the reconstruction?

Upgraded Energy Collection

•Materials: Enhanced with new modules using scintillating crystals and plastic fibers for improved radiation hardness.

•Readout: Incorporates both front and back readouts for better energy resolution and timing. •Simulation: Hybrid Monte Carlo simulations validate the new configurations, showing improved performance over current setups.

PRELIMINARY STUD

Energy Reconstruction Algorithms

• Current Algorithm

- Cellular Automaton based Algorithm: Identifies local maxima, forming 3×3 cell clusters. Applies corrections for longitudinal (Lcorrection), transverse (S-correction), and energy leakage (Ecorrection) to refine cluster properties.
- The recontruction is carried out by off defining first the front and previously the back clusters which are then matched with the following clusters
- The Upgrade II simulations show significant improvements in energy resolution and distribution uniformity in the upgraded ECAL compared to the current system.

Energy Front and Back Sections

• The longitudinal segmentation allows better handling of overlapping clusters and more precise energy measurements.

Time Collection

•Having seen the effect of the new design applied to energy, a study has been started on the effect of time and correlations on the reconstruction of new clusters to improve the efficiency of the reconstruction.

•Important factors preliminary to the study:

- eF (Cluster Front Energy)
- eB (Cluster Back Energy)
- e_perCell (Cell Energy)
- eF_percCell (Cell Front Energy)
- eB_perCell (Cell Back Energy)

- t (Cluster Time)

- tF (Cluster Front Time)
- tB (Cluster Back Time)
- tF_percCell (Cell Front Time)
- tB_perCell (Cell Back Time)
- Region [1,2,4,5,6]

•The correlation of energy with time clearly shows being filtered by regions that there is a variation due to cells that are found in boundaries, clusters made of cells from different regions.

•More than one peak can be observed in the same region as in region 5 indicating that it could be a cluster sharing cells from different regions.

Figure 7: Reconstruction of pi0's reconstruction, where after applying the longitudinal improves the ratio.

Figure 6: Longitudinal segmentation, Matching between back and front clusters to join them as one same collision

References

[1] LHCb collaboration. LHCb Particle Identification Enhancement Technical Design Report, CERN-LHCC-2023-005, 2024. [2] LHCb collaboration, *PicoCal baseline for the Scoping Document*, Philipp Roloff (CERN), 2024. [3] LHCb collaboration, Status of the simulation and reconstruction studies, Marco Pizzichemi, 13/05/2024.

•The time variation based on the TB - TF resolution is clearly affected by three technologies; in this case it is the representation of the 3 peaks in the figure showing the different regions.

•Due to larger distance between PMT front and PMT back in some cells of different regions.

The project continues!

•To finish investigating the effect of time and how it can improve the performance of ECAL reconstruction algorithms.

•Define more clearly what limits we place on time variables and their 3 new technologies.

•Make the most of this new variable (time) as important or more important as energy.

Contact: gabriel.garcia.asensio@cern.ch

