
Automating ATLAS control room
anomaly detection with ML

Introduction
To ensure high-quality data acquisition at ATLAS, the detector status is 
monitored by a team of shifters in the control room. We aim to improve 
the quality of anomaly detection and decrease the workload of the 
control room staff by developing a machine learning model to watch 
the incoming time-series data on the status of the detectors and flag 
anomalies. The goal is for this model to run online, alerting staff of 
problems in real-time so the appropriate corrections can be made.

Model performance

Model architecture
Input:
• Time series data of 5 samples
• Each sample with 

16  features: L1 trigger rates, L1 
muon sector logic inputs,  pileup

Detecting 5% anomaly

Data processing
• Import raw data and drop high fluctuating regions at ends of run
• Robust scaling of data so that resilient to outliers
• Note luminosity block marking transition from constant to decaying 

pileup (e.g. LB 700 in Fig. 3) so that data can be separated

Anomaly/clean classification step:
• Model trained exclusively on clean data so low mean squared error 

(MSE) between predicted and clean real values
• Doesn't see anomalous data in training so when encountered, 

performs worse (higher MSE)
• Set threshold MSE between clean and anomalous classifications

Output:
• Prediction of 16 features 

for next sample (one 
luminosity block/one 
minute in future)

Predictive LSTM Autoencoder: Long short-term memory (LSTM) 
layers incorporate time-series element of data, handling anomalies 
evolving in time. Autoencoder shape forces the model to learn lower 
dimensional representation of data, extracting key points 
from the  feature list. Since learning is unsupervised, we can easily 
retrain on new datasets to adapt to changes in operational conditions.

Training data:
• Three full runs
• Around 2000 datapoints

Test data:
• Fourth full run
• Around 900 datapoints

Model training
• Loss = MSE
• Test sample consistently performing better than training results 

from intrinsic differences in test and train

Figure 1. Structure of model with data flowing from input on left to 
output on right.

To assess the model's effectiveness at identifying anomalies, we 
produced artificial anomalous data sets by taking the test run and, for 
a single feature, increasing the first 30 data points by 5%.

Figure 5. Real test data vs the predictions 
made by the model.

Model predictions
• Model accurately traces trends in data
• Prediction smoother than real as intended with autoencoder
• High MSE at ends of runs because fails to reach lows in low pileup 

region since very few samples in that region

Figure 6. MSE between predicted and real 
values of L1_eEM26M for test data with this 
feature modified for first 30 datapoints.

Figure 7. ROC curve  shows trade-off between 
true positive rate and false positive rate as 
classification threshold is adjusted.

Next steps
• Assess different classes of anomalies (e.g. continuous anomalous 

range, point anomalies, varying anomalies)
• Test on real anomalous runs
o Portion of data from June with muon endcap disabled

• Experiment with pinpointing source of error
• Explore possibilities of variational autoencoder architecture
• Prepare for online usage

Figure 2. Raw data from run 480219 pre-
trimming and scaling.

Figure 3. Post-processed data that will 
be fed into model.
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Figure 4. Loss curve  shows strong 
improvement of MSE over epochs.

• Most of the high MSE data points belong to anomalous data range 
but also observe bump at end of data where prediction fails to keep 
up with drop in data

• Can set threshold to get 90% true positive rate at cost of around 
30% false positive rate

• Some features have poor ROC curves, but at 10% 
anomaly, AUC greater than 0.66 for all datasets

Avery Hanna | CERN Summer Student, Tufts University
Mario Campanelli | UCL & Antoine Marzin | CERN

Luminosity Blocks Luminosity Blocks

(H
z)

(a
.u
.)


