Jet Flavour Classification With Graph Neural Networks

LHCh

Gabriella Pesticci | CERN Summer Student | Kenyon College Dr. Conor Henderson | CERN | University of Cincinnati Dr. Nathan Allen Grieser | CERN | University of Cincinnati

Motivation			Data Preparation			
				Particles Present in Leading Jet		
Proton-proton collisions at the	tracks	b jet	Jet Features:	Particle ID	Signal Counts	Background Counts
Large Hadron Collider (LHC)			• Describes overall jet	-3122: Λ	4861	2501
Large Haaron Connact (LIIC)			Irinanatias	-2212: p ⁻	9640	16193
generate various particles,	b hadron		kinematics	-321: K ⁻	28599	27363
including quarks and gluons			• Shared by all daughters	-211: π^{-}	232082	223814
moruaning quarks and graons.	impost	1 / 1	·	-22: γ	66737	63545
These particles hadronize due	impact		in the jet	-13: μ^+	5456	1114
to OCD confinement forming	parameter			-11: e ⁺	14963	12551
to QCD commentent, forming				11: e	14550	12104
jets that are detected by the			Daughter Features:	$13: \mu$	2022 406754	945
J IICh Identificine the true of			• Unique kinematics for	22: γ	490734	439141
LHCb. Identifying the type of		secondary – secondary	• Onique kinematics foi	211: π^+	235952	229267
iet is crucial for		1 vortov	each daughter in the jet	310: K ⁰	39285	17327
		vertex		321: K^+	28977	28592
reconstruction and	do/			2212: p ⁺	10255	17210

understanding of collision light jet events. My goal is to utilize deep learning, specifically graph neural networks, to classify *b*-jets, based on characteristics of both the jet itself, and the kinematics of the daughter particles. This GNN will be applied for further classification of *c*-jets and fat jets.

Graph 3: 9 nodes, 36 edges

3-jet event producing a *b*-jet [1]

Graph Neural Networks

Graph neural networks (GNN) are powerful deep learning algorithms which work with graph-structured data. GNNs are advantageous for performing binary classification of jet flavours due to their ability to capture complex relationships within data and handle inhomogeneous data.

Graph 2: 17 nodes, 136 edges

Graph 1: 18 nodes, 153 edges

- **Truth Matching:** • All data: MC Match = 1
- Signal data: MC Jet EfB > 0.6
- Background data: MC Jet EfB < 0.6MC Jet EfD < 0.6
- **Jet Selection:** • pT > 20 GeV
- $2.2 < \eta < 4.4$

Muon Features:

- Currently not included
- N muons
- Prob NN mu
- Muon IP Chi2

Calculate $\Delta \mathbf{R}$ for muons:

- $\Delta R^2 = \eta^2 + \phi^2$
- Select $\Delta R < 0.5$ \bullet

IP

6 graphs included in the sample

Graphs: one graph represents a leading jet in the dijet sample

Nodes: one for each daughter in the jet

Edges: fully connected nodes

Features: 31 total, description of overall jet and individual daughter kinematics

GNN Architecture

- Calculate ΔR
- Apply muon features

• Add SV tagging variables

References

[1] Bain, Reggie. "Jets Aren't Just a Game of Tag Anymore." *ParticleBites*, 19 Feb. 2017, www.particlebites.com/?p=4007.

Acknowledgements

would like to thank Dr. Conor Henderson and Dr. Nathan Allen Grieser for their mentorship and guidance throughout this summer. Additionally, I would like to acknowledge the University of Michigan REU Program, the CERN Summer Student Program, and my fellow summer students for their support.