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Receiver Operating Characteristics (ROC)
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* Training: 0.8786 — 0.5462

* Testing: 0.1738 — 0.1366
Accuracy

* Training: 0.5086 — 0.7366

* Testing: 0.5073 — 0.7250

6 graphs included in the sample

0.8 A

Graphs: one graph represents a leading jet 1n the dijet sample
Nodes: one for each daughter in the jet
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Background Rejection

Edges: fully connected nodes AUC B N
Features: 31 total, description of overall jet and individual daughter kinematics * AUC=0.38214
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Prediction: b-jet or not Track (x, y, z)
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