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Recent TRACCC Results...

Performance studies on TRACCC on 
full track finding on ODD 

• Still early stage, of course

• First results on tracking 

performance and throughput

Few things to notice:
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ODD Reconstruction Compute Performance (2)

● Running the not-quite-perfect full 
track reconstruction on various CPUs 
and (NVIDIA) GPUs, the results are 
already promising

○ The current, not-well-optimized track 
finding/fitting already runs faster at high μ 
on reasonably priced GPUs than on a 
reasonably priced CPU

○ Though the Grace CPU seems 
untouchable at this poor GPU code 
optimization level…

● We have some good work ahead with 
optimizing the track finding/fitting! 😄
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• Results are TRACCC, also on CPU
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• The benchmark is throughput / KCHF 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➡ This is a good start, but the gap is sizeable !



Current TRACCC Reconstruction Chain

TRACCC strives to reproduce ACTS (ATLAS offline) 
reconstruction chain 

• Early stages from hits to track seeds are all 
relatively well suited for GPUs in terms of 
algorithmic approaches and decomposition


• Results show a sizeable speedup, but same 
comments on 32bit, ODD vs (full ITk) ACTS, and 
throughput / KCHF apply


• Limit is (C)KF track finding which is almost serial


3

• Already the diagram 
shows that this is not 
as nicely composed 
into suitable 
algorithmic kernels




What could be done to improve Track Finding ?

The Combinatorial Klaman Filter involves several (nested) loops of different 
length, branching and sequences of decisions, not suited for GPU processing 

• In reality the GPU code (like the offline) does not run a full combinatorial filter, 
but a progressive scan taking only the best hit on each sensor surface


• While this is ok, even a KF track finder is quite involved
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KF Track Finder

What could be done to improve Track Finding ?

Let's focus on the KF Track Finder first 
• Discuss KF Smoother, Outlier Removal and Ambiguity Solver later


Important developments to port functionality onto GPUs 
• Detray for navigating the geometry, Covfie for B-Field lookups
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KF Track Finding Approach

To disentangle the loops we have to rethink the algorithmic approach 
• ACTS implements the NewTracking CKF based on the original Kalman Filter (Fruehwirth et al.) 

• Mathematical approach works well on CPUs, but requires the entangled loops


Let's look a bit closer... 
• The propagator implements the track model, it provides the transport Jacobian
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The Track Extrapolation Package

•a transport engine used 
in tracking software 
➡ central tool for pattern 

recognition, track fitting, etc. 
➡ parameter transport from 

surface to surface, including 
covariance 

➡ encapsulates the track model, 
geometry and material 
corrections
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track following in mathematical terms:

charged particle. The track model, i.e., the shape of the
trajectory, can be used to interpolate between the mea-
surements and create a road around the trajectory. Mea-
surements inside the boundaries of the road constitute
the track candidate. The number of measurements and
the quality of the subsequent track fit are used to evalu-
ate the correctness of the track hypothesis.

4. Track following

A related approach is track following, which starts
from a track seed. Most of the times, the seed is a short
track segment built from a few measurements. In addi-
tion it can be constrained to point to the interaction
region. Seeds can be constructed in the inner region
of the tracking detector close to the interaction region,
where the measurements frequently are of very high
precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
next detector layer containing a measurement. The mea-
surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.

✏✏✏✶
###$

! !qi qk = fk|i(qi)

surface i surface k

FIG. 3. An illustration of the track model and propagation
concepts. The function fk#i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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KF Track Finding Approach

To disentangle the loops we have to rethink the algorithmic approach 
• ACTS implements the NewTracking CKF based on the original Kalman Filter (Fruehwirth et al.) 

• Mathematical approach works well on CPUs, but requires the entangled loops


Let's look a bit closer... 
• The KF iteratively propagates and then updates the prediction with a measurement, propagates...
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The Kalman Filter Track Fit
•in mathematical terms: 

➡ alternative to gain matrix approach is a 
weighted mean to obtian pk|k 
• but requires to invert 5x5 matrix 

instead of a matrix of rank(Gk)
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Track fitting: Traditional approach
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1. propagate pk-1 and its covariance Ck-1 :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Qk ~ noise term (M.S.)  

2. update prediction to get qk|k and Ck|k :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Kk ~ gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks

z

x

z = zk−1 z = zk

surface k − 1 surface k

filtered state
qk−1|k−1

scattering matter

predicted state qk|k−1

filtered state qk|k

measurement mk
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proceeds from layer k+1 to layer k : 

with Ak ~ smoother gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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•Kalman Smoother: 
➡ provides full information along track 

➡ equivalent: combine forw./back. filter

for completeness 

42Markus Elsing

The Kalman Filter Track Fit
•in mathematical terms: 

➡ alternative to gain matrix approach is a 
weighted mean to obtian pk|k 
• but requires to invert 5x5 matrix 

instead of a matrix of rank(Gk)
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1. propagate pk-1 and its covariance Ck-1 :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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FIG. 4. Prediction and filter step of the Kalman filter. The
propagation proceeds in the z direction, while the x coordinate
is measured. Adapted from Regler et al., 1996.
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Qk ~ noise term (M.S.)  

2. update prediction to get qk|k and Ck|k :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Kk ~ gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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proceeds from layer k+1 to layer k : 

with Ak ~ smoother gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"
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!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
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and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"
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consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
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outliers, the smoothed predictions are biased, and the
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Another possibility is to make the track fit more ro-
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bust in this sense because outlying observations are au-
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found in Golutvin et al. !2000". It is based on a re-
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When the track finding is completed it may happen
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patibilities are usually forbidden, a maximal or optimal
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•Kalman Smoother: 
➡ provides full information along track 

➡ equivalent: combine forw./back. filter

for completeness 



Alternative Formulation of Kalman Filter

An alternative Formulation of the Kalman Filter uses a Reference Trajectory 
• Rudi, Pierre and I used this for DELPHI at the time...


Mathematically this is a different way of linearising the fitting problem 
• Taylor expansion of the track parameters q ~ q0 + δq + higher-terms

• Stick this into the track model gives


         f(q) ~ f(q0 + δq + higher-terms) ~  f(q0) + F•δq + higher-terms 

Formulate the Kalman Filter as a fit for δq 
• Mathematically one needs to replace qk|k-1 with δqk|k-1 making it:


                        qk|k-1 = fk|k-1(qk-1|k-1) ~ fk|k-1(q0,k-1) + Fk|k-1•δqk-1|k-1 

• Hence, the call to the propagator (track model) is replaced by the Reference Trajectory f(q0) !
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Reference Trajectory Transport Jacobian



Alternative Formulation of Kalman Filter

A Kalman Filter with a reference trajectory is a different way of linearising the track fit 
• Mathematically it is totally sound, it is just a different way of linearising the track model

• The convergence of this KF track fit depends on the precision of the starting parameters p0

• If p0 is too far off, the linear term is not sufficient and/or the Reference Trajectory misses the 

right sensor surfaces

• In DELPHI, I did iterate the track fit once to improve convergence

• To ensure that all relevant surfaces are "on" the Reference Trajectory, consider overlapping 

sensors even in case of "near misses"
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Alternative KF Track Finding Implementation

In practical terms, the starting parameters p0 are obtained from the ProtoTrack 
• Hence we start with the normal output of the Track Seeding step

• We can use Detray (or a simple cone approach like Igor) to define the list of Target Surfaces

• Propagator loops over the (sorted) list of traget surfaces to build the Reference Trajectory f(p0)

• Result is a much more linear algorithm flow:
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Alternative KF Track Finding Implementation

In practical terms, the starting parameters p0 are obtained from the ProtoTrack 
• Hence we start with the normal output of the Track Seeding step

• We can use Detray (or a simple cone approach like Igor) to define the list of Target Surfaces

• Propagator loops over the (sorted) list of traget surfaces to build the Reference Trajectory f(p0)

• Result is a much more linear algorithm flow:
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ProtoTrack

Detray*

Traget Surfaces

Propagator

Step Estimator

Material Effects 
Updater

Reference 
Trajectory

Adding the KF Track Finder now, it becomes a loop over surfaces on the Reference Trajectory 
• Uses the Transport Jacobians as a replacement of the call to the Propagator !
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*Andi has an idea on how to do such a surface search in Detray
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Alternative KF Track Finding Implementation

Resulting algorithmic flow looks much more linear 
• It builds fully on existing TRACC software, most of the required code exists

• What changes is the calling sequence and the mathematical approach to the KF


Each of the steps in the chain can be individually parallelised on the GPU 
• Building the list of Target Surfaces using Detray

• Using the Propagator to build the Reference Trajectory

• The KF Track Finder using the Reference Trajectory


The Propagator is still the most involved piece of code, but disentangled from the Detray 
• Note, the material effects are handled at this stage too !

• Multiple scattering enters in the transport of the covariance using the Jacobians

• Energy loss enters as a change in the curvature of the Reference Trajectory
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On Parallelising...

One final remark on the how to parallelise the algorithmic calls in the chain 
• The Track Seeding iterates over Bins !

• All tracks in a Bin cross a similar number 

of surfaces, so parallel loops make sense

• Tracks in the neighbouring Bins in R/φ as well

• Bins are a natural sorting for Prototracks, 

Reference Trajectories ...
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Run2 ID ITk

TRT
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Pixel
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R/Φ view
R/z view



Questions ?
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