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https://indico.cern.ch/event/1374927/contributions/5942596/attachments/2883880/5053570/GNN4ITKaaS-ATLASIDWorkshop.pdf
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Traccc standalone performance

1 NVIDIA A100 SXM4 80GB on Perimutter, ODD detector, traccc v0.10
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Attila Krasznahorkay, Inner Detector Tracking Workshop, 2024

Average interactions per bunch crossing

For traccc v0.10, able to match performance presented by
Attilia at inner detector workshop on A100 at Perlmutter
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https://indico.cern.ch/event/1374927/contributions/5942588/attachments/2883808/5053425/traccc%20Status%202024.06.25..pdf

Tracc main performance

1 03 1 NVIDIA A100 SXM4 80GB on Perlmutter, ODD detector, traccc main
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* Previously showed poor
performance of main traccc
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» Following results are still for
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migrating to main version
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Traccc as-a-Service implementation

* Main components:
o Standalone version of traccc to run
o Backend to execute standalone version on server
o Client to send and receive data from server

= Server 1s simply an interactive node on Perlmutter
o Send and receive data over localhost
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https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/standalone
https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/backend
https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/client

Standalone

= initialize()
o Read detector, geometry, and digitization files
o Setup detector, magnetic field
o Copy detector to device memory
o Configure finding and fitting options

» run(std::vector<traccc::io::csv::cell> cells)

o Read cells into device memory

o Perform algorithm (clusterization, spacepoint formation, track
finding, and track fitting)
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https://github.com/milescb/traccc-aaS/blob/b5c186dafaaa9e958f3a6ef804ac59c42e95fddf/standalone/src/TracccGpuStandalone.hpp
https://github.com/milescb/traccc-aaS/blob/b5c186dafaaa9e958f3a6ef804ac59c42e95fddf/standalone/src/TracccGpuStandalone.hpp

Custom Backend

* Built using NVIDIA Triton server

1. Inmitialization
a. Initialize server
b. Run initialize function from standalone

2. Run

a. Process tensor of cell components from client and embed 1n detector
b. Convert to std: :vector<traccc::io::csv::cell> cells

c. Run pipeline from standalone

= To test standalone performance, 2a and 2b are instead
done in initialization

o Will eventually be done on the client side and sent over via direct
memory buffer
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https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html
https://github.com/milescb/traccc-aaS/blob/b0f18655b49cb99ad1a620c3e62bcdb9e73c4124/backend/traccc-gpu/src/traccc.cc
https://github.com/milescb/traccc-aaS/blob/b0f18655b49cb99ad1a620c3e62bcdb9e73c4124/backend/traccc-gpu/src/traccc.cc

Client

» Reads .csv containing cell information

* Send data to server for processing

* For standalone test, sending dummy data
o On server side, reading in only one event

» Future purpose of client
o Process cells and create memory buffers for cells / imbedding in
detector
o Send direct memory buffer to server to be processed
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Performance and resource utilization

* To enhance performance:
o Load multiple instances onto server
o Process multiple concurrent requests

» Metrics to evaluate performance:
o Throughput

o GPU utilization (often correlated to GPU FLOPs)
o GPU memory utilization

» Metrics measured with Nvidia’s perf_analyzer tool
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https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton-inference-server-2280/user-guide/docs/user_guide/perf_analyzer.html
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» See good scaling from base performance

1 NVIDIA A100 SXM4 80GB, ODD detector, u =200, traccc v0.10
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= Apparent bottleneck 1n performance / utilization
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Initialize everything on server

» Instead of sending cells to server:
o Load 1n cells and embedding in detector during initializing loop
o Load 1into device memory

= Should reduce data 10 increasing throughput and GPU
utilization
o Expect marginal improvements
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Results of 1nitializing everything
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= St1ll some performance we can squeeze out

5 September 2024

M. Cochran-Branson

1 NVIDIA A100 SXM4 80GB, ODD detector, p =200, traccc v0.10
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Summary and next steps

» Presented standalone traccc-as-a-service

= Initial results show good scaling and improved resource utilization
o Throughput increases from ~2.5 events/sec to ~3.5 events/sec
o Get this improvement almost for free!

» Next steps:
o Update to new version of traccc
o Improve client's abilities to pre-process removing some initialization steps
» Will replicate real-world model better
o Match traccc throughput examples (detector caching, multi-threading, etc.)
o Multi-GPU performance studies
o Multiple event batching
o Think about possible integration into athena
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