Tracce as-a-service
development update

Miles Cochran-Branson, Yuan-Tang Chou, Xiangyang Ju, Haoran Zhao
ACTS parallelization meeting
6 September 2024

YATLAS &P

EXPERIMENT

As-a-service (aad) P

* Heterogenous computing
o CPU/ GPU connected on the Direct Connection As-a-service

same node ~ N ~ P ~
o Many working examples [Nooe NODE GPU Server

available T T

o Can be inefficient in use of cru | | eru .
resources

— > Gpu | | cPU

. f gRPC
= As-a-service model - -—

NODE GPU Server

o Dedicated GPU server to offload | |
computation cpu | | FPGA

o Can be easier to integrate with 5 el | B cPUI | cP
production framework (e.g. - S / N /

Athena) Clients Servers

Athena Cloud/HPC/Local

o Potentially improve
scalability and resource .
utilization

uan-Tang Chou, Inner Detector Tracking Workshop, 2024

6 August 2024 M. Cochran-Branson

https://indico.cern.ch/event/1374927/contributions/5942596/attachments/2883880/5053570/GNN4ITKaaS-ATLASIDWorkshop.pdf

Previous use: ExaTrkX-as-a-service

ODD detector with u = 200

= With multiple model instances

‘One N\/IDIA A100-SXM4-80GB on Peflmutter_

on the server, GPU utilization Z/ﬁ -
1increases to ~100% g =
o Low overhead of server = one = 1.3
Iinstance ~standalone performance)
= With multiple concurrent N U
requests, throughput increases L OreNVIDIA AT St 4008 on Pt
o Steady around 2-3 concurrent S o —————
requests T R R A s B B B
" Demonstrates usefulness of aaS £ :
approach e

6 August 2024

M. Cochran-Branson

6 8 10

12 14

16

Number of Concurrent Requests

S

Traccc standalone performance

1 NVIDIA A100 SXM4 80GB on Perimutter, ODD detector, traccc v0.10

S 108 = - - - - = @® AMD EPYC 7413 (48 CPU threads) @ Grace (72 CPU threads) 4 GH200 (2 CPU threads)
@ - AMD EPYC 7763 (48 CPU cores) 3 @ NVIDIA RTX A5000 (2 CPU threads) NVIDIA RTX A4000 (2 CPU threads) = NVIDIA RTX3080 (2 CPU threads)
o - —.—]
g B NVIDIA A100 SXM4 80GB (2 CPU cores) | RVIDIA RTX2060 (2 CPU thisads)
§2) L 7 1000
o
> B 1 -
3 500
C 102 — —
< 0 : FP32
3 - 7
o - . T
= N 7 & 100
2 0] P
- B . 3 50
S
3 10" . — A
< - . S
= -] 8
9 B = 10
= B h
= | | 5

100 PR S SR ST S RS S B S S S S S

0 50 100 150 200 250 300

u=20 U =40 u =60 u =80 u =100 u =140 u =200 u =300

Attila Krasznahorkay, Inner Detector Tracking Workshop, 2024

Average interactions per bunch crossing

For traccc v0.10, able to match performance presented by
Attilia at inner detector workshop on A100 at Perlmutter

5 September 2024 M. Cochran-Branson

https://indico.cern.ch/event/1374927/contributions/5942588/attachments/2883808/5053425/traccc%20Status%202024.06.25..pdf

Tracc main performance

1 03 1 NVIDIA A100 SXM4 80GB on Perlmutter, ODD detector, traccc main
—~ L I L e

* Previously showed poor
performance of main traccc

—8— AMD EPYC 7763 (48 CPU cores)
NVIDIA A100 SXM4 80GB (2 CPU cores)

102

= Now see improvement In
GPU performance

/

» Following results are still for
v0.10
o Dealing with silly bugs
migrating to main version

—
Q

Throughput for full-chain (events / sec

100‘“‘l““l““l““l““l““
50 100 150 200 250 300

Average interactions per bunch crossing

o

5 September 2024 M. Cochran-Branson

Traccc as-a-Service implementation

* Main components:
o Standalone version of traccc to run
o Backend to execute standalone version on server
o Client to send and receive data from server

= Server 1s simply an interactive node on Perlmutter
o Send and receive data over localhost

5 September 2024 M. Cochran-Branson

https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/standalone
https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/backend
https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/client

Standalone

= initialize()
o Read detector, geometry, and digitization files
o Setup detector, magnetic field
o Copy detector to device memory
o Configure finding and fitting options

» run(std::vector<traccc::io::csv::cell> cells)

o Read cells into device memory

o Perform algorithm (clusterization, spacepoint formation, track
finding, and track fitting)

5 September 2024 M. Cochran-Branson

https://github.com/milescb/traccc-aaS/blob/b5c186dafaaa9e958f3a6ef804ac59c42e95fddf/standalone/src/TracccGpuStandalone.hpp
https://github.com/milescb/traccc-aaS/blob/b5c186dafaaa9e958f3a6ef804ac59c42e95fddf/standalone/src/TracccGpuStandalone.hpp

Custom Backend

* Built using NVIDIA Triton server

1. Inmitialization
a. Initialize server
b. Run initialize function from standalone

2. Run

a. Process tensor of cell components from client and embed 1n detector
b. Convert to std: :vector<traccc::io::csv::cell> cells

c. Run pipeline from standalone

= To test standalone performance, 2a and 2b are instead
done in initialization

o Will eventually be done on the client side and sent over via direct
memory buffer

5 September 2024 M. Cochran-Branson

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html
https://github.com/milescb/traccc-aaS/blob/b0f18655b49cb99ad1a620c3e62bcdb9e73c4124/backend/traccc-gpu/src/traccc.cc
https://github.com/milescb/traccc-aaS/blob/b0f18655b49cb99ad1a620c3e62bcdb9e73c4124/backend/traccc-gpu/src/traccc.cc

Client

» Reads .csv containing cell information

* Send data to server for processing

* For standalone test, sending dummy data
o On server side, reading in only one event

» Future purpose of client
o Process cells and create memory buffers for cells / imbedding in
detector
o Send direct memory buffer to server to be processed

5 September 2024 M. Cochran-Branson

Performance and resource utilization

* To enhance performance:
o Load multiple instances onto server
o Process multiple concurrent requests

» Metrics to evaluate performance:
o Throughput

o GPU utilization (often correlated to GPU FLOPs)
o GPU memory utilization

» Metrics measured with Nvidia’s perf_analyzer tool

6 August 2024 M. Cochran-Branson

https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton-inference-server-2280/user-guide/docs/user_guide/perf_analyzer.html

Results

@
o

3.6

3.4

3.2

3.0

GPU Throughput (infer/sec)

Ratio

» See good scaling from base performance

1 NVIDIA A100 SXM4 80GB, ODD detector, u =200, traccc v0.10

L — T T LA B R R — T T LI LA B B
—8— 1 requests
—&— 2requests
—&— 3requests
—8— 4 requests
—&— 5 requests

T 2 3 4 5

07““‘

Number of Triton Model Instances

GPU Utilization (%)

Ratio

[¢)]
o

40

1 NVIDIA A100 SXM4 80GB, ODD detector, u =200, traccc v0.10

—8— 1 requests
—8— 2requests
—8— 3requests
—8— 4 requests
—8— 5requests

m‘\\‘\

2 3 4 5
Number of Triton Model Instances

GPU Memory Usage (%)

Ratio

9 1 NVIDIA A100 SXM4 80GB, ODD detector, uy =200, traccc v0.10

—e— 1 requests N
—&— 2requests 4
—&— 3requests
—8— 4 requests
—&— 5 requests

Number of Triton Model Instances

= Apparent bottleneck 1n performance / utilization

5 September 2024

M. Cochran-Branson

S

Initialize everything on server

» Instead of sending cells to server:
o Load 1n cells and embedding in detector during initializing loop
o Load 1into device memory

= Should reduce data 10 increasing throughput and GPU
utilization
o Expect marginal improvements

5 September 2024 M. Cochran-Branson

Results of 1nitializing everything

S

»
N

>
)

4.0

GPU Throughput (infer/sec)
w
o

w
)

3.4

1.25

Ratio

1.00

1 NVIDIA A100 SXM4 80GB, ODD detector, u =200, traccc

v0.10

| —e— 1 requests
| —®— 2requests
?—0— 4 requests
| —®— 5requests

—8— 3 requests

.E/-‘ @ @ ! —4
2 38 4 5 6

Number of Triton Model Instances

GPU Utilization (%)

Ratio

= See excellent scaling

[e2] (2} 2] (o2} [¢2] ~
o N & o o o
T | UL | UL | UL

(o))
(o¢]

o
[S1e))

—
=

1 NVIDIA A100 SXM4 80GB, ODD detector, u =200, traccc v0.10

1 requests
2 requests
3 requests
—&— 4 requests
—8— 5 requests

tit

Number of Triton Model Instances

GPU Memory Usage (%)

Ratio

= St1ll some performance we can squeeze out

5 September 2024

M. Cochran-Branson

1 NVIDIA A100 SXM4 80GB, ODD detector, p =200, traccc v0.10
L L

I~ —@— 1 requests B

- —®— 2requests B
7 I —®— 3requests

- —@— 4 requests

| —®— 5requests
6
S
4
3 .
2 B 1 1 1 1 i
2 T T T T
1 I

- 1 1 1 1 —1

Number of Triton Model Instances

S

Summary and next steps

» Presented standalone traccc-as-a-service

= Initial results show good scaling and improved resource utilization
o Throughput increases from ~2.5 events/sec to ~3.5 events/sec
o Get this improvement almost for free!

» Next steps:
o Update to new version of traccc
o Improve client's abilities to pre-process removing some initialization steps
» Will replicate real-world model better
o Match traccc throughput examples (detector caching, multi-threading, etc.)
o Multi-GPU performance studies
o Multiple event batching
o Think about possible integration into athena

5 September 2024 M. Cochran-Branson

