
Traccc as-a-service 
development update
Miles Cochran-Branson, Yuan-Tang Chou, Xiangyang Ju, Haoran Zhao
ACTS parallelization meeting 
6 September 2024



As-a-service (aaS)
§ Heterogenous computing

o CPU / GPU connected on the 
same node

oMany working examples 
available

oCan be inefficient in use of 
resources 

§ As-a-service model
oDedicated GPU server to offload 

computation
o Can be easier to integrate with 

production framework (e.g. 
Athena)

oPotentially improve 
scalability and resource 
utilization

6 August 2024 M. Cochran-Branson 2

Direct Connection As-a-service

Yuan-Tang Chou, Inner Detector Tracking Workshop, 2024

https://indico.cern.ch/event/1374927/contributions/5942596/attachments/2883880/5053570/GNN4ITKaaS-ATLASIDWorkshop.pdf


Previous use: ExaTrkX-as-a-service
§With multiple model instances 

on the server, GPU utilization 
increases to ~100%
oLow overhead of server ⇒ one 

instance ~standalone performance
§With multiple concurrent 

requests, throughput increases
oSteady around 2-3 concurrent 

requests
§Demonstrates usefulness of aaS 

approach

6 August 2024 M. Cochran-Branson 3

ODD detector with 𝜇 = 200



Traccc standalone performance

For traccc v0.10, able to match performance presented by 
Attilia at inner detector workshop on A100 at Perlmutter

5 September 2024 M. Cochran-Branson 4

Attila Krasznahorkay, Inner Detector Tracking Workshop, 2024

https://indico.cern.ch/event/1374927/contributions/5942588/attachments/2883808/5053425/traccc%20Status%202024.06.25..pdf


Tracc main performance

§Previously showed poor 
performance of main traccc

§Now see improvement in 
GPU performance

§Following results are still for 
v0.10
oDealing with silly bugs 

migrating to main version

5 September 2024 M. Cochran-Branson 5



Traccc as-a-Service implementation
§Main components:

oStandalone version of traccc to run 
oBackend to execute standalone version on server
oClient to send and receive data from server

§Server is simply an interactive node on Perlmutter 
oSend and receive data over localhost

5 September 2024 M. Cochran-Branson 6

https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/standalone
https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/backend
https://github.com/milescb/traccc-aaS/tree/odd_traccc_v0.10.0/client


Standalone
§ initialize()

oRead detector, geometry, and digitization files
oSetup detector, magnetic field
oCopy detector to device memory
oConfigure finding and fitting options

§ run(std::vector<traccc::io::csv::cell> cells)
oRead cells into device memory
oPerform algorithm (clusterization, spacepoint formation, track 

finding, and track fitting)

5 September 2024 M. Cochran-Branson 7

https://github.com/milescb/traccc-aaS/blob/b5c186dafaaa9e958f3a6ef804ac59c42e95fddf/standalone/src/TracccGpuStandalone.hpp
https://github.com/milescb/traccc-aaS/blob/b5c186dafaaa9e958f3a6ef804ac59c42e95fddf/standalone/src/TracccGpuStandalone.hpp


Custom Backend
§Built using NVIDIA Triton server
1. Initialization

a. Initialize server
b. Run initialize function from standalone

2. Run
a. Process tensor of cell components from client and embed in detector
b. Convert to std::vector<traccc::io::csv::cell> cells
c. Run pipeline from standalone

§To test standalone performance, 2a and 2b are instead 
done in initialization
oWill eventually be done on the client side and sent over via direct 

memory buffer

5 September 2024 M. Cochran-Branson 8

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html
https://github.com/milescb/traccc-aaS/blob/b0f18655b49cb99ad1a620c3e62bcdb9e73c4124/backend/traccc-gpu/src/traccc.cc
https://github.com/milescb/traccc-aaS/blob/b0f18655b49cb99ad1a620c3e62bcdb9e73c4124/backend/traccc-gpu/src/traccc.cc


Client 
§Reads .csv containing cell information
§Send data to server for processing 
§For standalone test, sending dummy data

oOn server side, reading in only one event
§Future purpose of client

oProcess cells and create memory buffers for cells / imbedding in 
detector

oSend direct memory buffer to server to be processed

5 September 2024 M. Cochran-Branson 9



Performance and resource utilization
§To enhance performance: 

oLoad multiple instances onto server
oProcess multiple concurrent requests

§Metrics to evaluate performance:
oThroughput
oGPU utilization (often correlated to GPU FLOPs)
oGPU memory utilization

§Metrics measured with Nvidia’s perf_analyzer tool

6 August 2024 M. Cochran-Branson 10

https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton-inference-server-2280/user-guide/docs/user_guide/perf_analyzer.html


Results

§See good scaling from base performance
§Apparent bottleneck in performance / utilization
5 September 2024 M. Cochran-Branson 11



Initialize everything on server
§ Instead of sending cells to server:

oLoad in cells and embedding in detector during initializing loop
oLoad into device memory 

§Should reduce data IO increasing throughput and GPU 
utilization
oExpect marginal improvements

5 September 2024 M. Cochran-Branson 12



Results of initializing everything

§See excellent scaling
§Still some performance we can squeeze out 
5 September 2024 M. Cochran-Branson 13



Summary and next steps
§ Presented standalone traccc-as-a-service
§ Initial results show good scaling and improved resource utilization

o Throughput increases from ~2.5 events/sec to ~3.5 events/sec
oGet this improvement almost for free!

§ Next steps:
oUpdate to new version of traccc
o Improve client's abilities to pre-process removing some initialization steps

• Will replicate real-world model better
oMatch traccc throughput examples (detector caching, multi-threading, etc.)
oMulti-GPU performance studies
oMultiple event batching
o Think about possible integration into athena

5 September 2024 M. Cochran-Branson 14


