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Introduction
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In this talk we will discuss Euler Integrals, i.e. of the form

A(s, ϵ) = ∫ℝn
≥0

dα1…dαn

m

∏
j=1

Pj(α, s)c(ϵ)

Euler Integrals are ubiquitous in physics. 

 Feynman & Phase-Space Integrals, Region integrals, String Amplitudes, Cosmological correlators. 

To some extent, all of these can be expressed in terms of Euler integrals

Polynomials in  with coefficients α s



The goal
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Our objective is to compute the expansion in the “dimensional regulator“ ϵ

τϵA(s, ϵ) = ∑
i=−N

ϵiAi(s)

With the coefficients  represented in terms of convergent integrals - to be then evaluated by other means 

(E.g. Numerically, by direct integration or differential equations)

Ai(s)

Ai(s) = ∫ℝn−i
≥0

𝒥(s)



Local Finiteness
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An obvious idea is to expand in  directly under sign of integrationϵ

τϵ ∫ ℐ(s, ϵ) = ∫ τϵℐ(s, ϵ)

In general this is incorrect.  

For instance, it would not give poles in   

We will say that the integrand  is locally finite when the above holds

ϵ

ℐ

?



Subtraction Schemes
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The strategy we will use to compute  is to build a subtraction scheme 

That is we look for suitable counter-terms which allow us to re-write

τϵA(ϵ)

ℐ = [ℐ − ℐct] + ℐct

In such a way that 

1) The renormalized integrand  is locally finite 

2) The counter-terms are easier, i.e. we can partly integrate them:  

ℐren := ℐ − ℐct

∫ℝn
≥0

ℐct =
1
ϵi ∫ℝn−i

≥0

𝒥



Other approaches 
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Aside from techniques based on differential equations, there are other two important methods  to be aware of

1) Nilsson-Passare analytical continuation

2) Sector Decomposition 

∫ℝn

ℐ = [IBP] =
1
ϵ ∫ℝn

ℐ′￼

With the remaining integrands locally finite. Drawback: no simplification in the computation of poles

The domain is divided in pieces where subtraction is easier. Drawback: the artificial decomposition introduces spurious structures



Warming up I 
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Let us illustrate the challenges by means of simple toy examples

We begin with an example of a finite integral that fails to be locally finite

0 = ∫
1

0

dα
α (αϵ − 2α2ϵ) ≠ ∫

1

0

dα
α (−1 + 𝒪(ϵ)) = ∞

This simple example already points to the central issue: 

In order for a combination of integrands to be locally finite their local behavior - as captured by a 

series expansion around the boundary of the integration domain - must cancel 



Warming up II 
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A natural guess for a counter-term for an integrand is its own expansion around the boundaryℐ

τϵ ∫
1

0

dα
α

[αϵ(1 + α)ϵ − αϵ] = ∫
1

0

dα
α

τϵ[αϵ(1 + α)ϵ − αϵ] = ϵ∫
1

0

dα
α

log(1 + α) + . . . = ϵ
ζ(2)

2
+ …

However, a subtlety is that there may be singular behaviors “hidden“ at the boundary

(α1 + α2 + α1α2)ϵ = [α2 → α2α1] = αϵ
1(1 + α2 + α1α2)ϵ

Furthermore, the expansion of an integrand around a boundary introduces further singularities away from it



Warming up III 
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An even worse problem is overcounting of divergences.  

Consider the integrand , we tentatively subtract its divergences byℐ = αϵ
1αϵ

2(α1 + α2 + α1α2)ϵ

∫
1

0

dα1dα2

α1α2
[αϵ

1αϵ
2(α1 + α2 + α1α2)ϵ − αϵ

1αϵ
2(α2)ϵ − αϵ

1αϵ
2(α1)ϵ] = ∫

1

0

dα1dα2

α1α2
[1 − τα1

− τα2
]ℐ

where we have introduced the operator  that computes the series expansion in  (up to an appropriate order).τx x

The above is not locally finite, because it is still singular as either variable goes to 0. 

 The issue is that we have subtracted twice the singular behavior at the origin.  

We can try to compensate this with a further term τα1
τα2

ℐ



Warming up III 
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This could work if the operator  commuted:ταi

[1 − τα1
− τα2

+ τα1
τα2

]ℐ = [1 − τα1
][1 − τα2

]ℐ

Which makes manifest that the renormalized integrand has no singular behavior for neither  

However, in general the operators do not commute:

αi → 0

τα1
τα2

(α1 + α2 + α1α2)ϵ = αϵ
1 ≠ αϵ

2 = τα2
τα1

(α1 + α2 + α1α2)ϵ



Wrapping up
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We are now familiar with the basic issues in the construction of a local ”subtraction scheme“ 

  

In the rest of the talk, we will see how these can be addressed using elementary ideas from Tropical Geometry 

As a concrete application we will develop a subtraction scheme that is applicable to Euler integrals satisfying a certain property

1) Find all singular behaviors of the integrand 

2) Cancel them locally with counter-terms, without introducing new divergences 

3) Avoid double counting 



Outline
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1. Tropical Geometry 101 

2. A subtraction scheme 

3. Some examples



What is Tropical Geometry?
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V = {x, y ∈ ℂ, x + y + 1 = 0}

Tropical geometry studies algebraic varieties by approximating them via piecewise linear geometries, e.g.

This is done by solving the equations defining the variety over the Puiseaux series field

ℂ((t)) = {ϕ = ta (∑
i

citi), a ∈ ℂ}

And studying the image under the evaluation map, which returns the leading term of the series Trop : ϕ ↦ a

Trop V = Trop{x, y ∈ ℂ((t)), x + y + 1 = 0}



What is Tropical Geometry?
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For the equation  to be satisfied, the leading terms must cancel. 

This requires  to be attained twice in  space 

This yield the tropical line

x(t) + y(t) + 1 = 0

max(0,Trop(x), Trop(y)) (vx, vy) = (Trop x, Trop y)

Trop V = Trop{x, y ∈ ℂ((t)), x + y + 1 = 0} =
0

y

x



Tropicalization made simple
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Consider a function  and let us define its tropicalization  as f : ℝn
≥0 → ℝ Trop f : ℝn → ℝ

Trop f(ρ) = lim
α′￼→0+

α′￼log f(α = exp(−ρ/α′￼))

Trop (ax2 + by + c) = max(2x, y,0)

For simple functions, such as polynomials, we compute the tropicalization by “replacing (*,+) with (+,max)“, for instance:

The tropicalization of a function captures it behavior at the boundary where αi ∼ λ−ρi, λ → 0



Finiteness
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The tropicalization of an Euler integrand  is computed as  

Our interest in the tropical integrand is due to the following result [Arkani-Hamed et al, 2202.12296]

ℐ = ∏
j

Pj(α, s)νj Trop ℐ = max(νjTrop Pj)

If , the Euler integral   is finite if s ≥ 0 ∫ℝn
≥0

dα
α

ℐ Trop ℐ < 0

ℐ = ( α
1 + α )

ϵ

( 1
1 + α )

ϵ

Example:

−ϵ −ϵ
Trop ℐ =

So the integral is finite for  and diverges for ϵ > 0 ϵ → 0



Local Finiteness
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In fact a stronger result holds [GS, 2406.14606]:

A combination  of Euler integrands is locally finite if  on all vectors ℐ = ∑
i

ℐi Trop ℐ(ρ) = a + 𝒪(ϵ), a < 0 ρ

I will not go through the proof of the above in this talk 

But I will explain the basic notions of tropical geometry on which the proof builds 

This will also give us the necessary intuition to understand the construction of the subtraction scheme



Newton Polytopes
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The previous result shows the importance of understanding the tropical integrand 

For a single Euler integrand it turns out that it is entirely characterized by a geometrical object: the Newton Polytope 

Consider a polynomial , then we define  

Like all polytopes, the Newton polytope admits a dual presentation as  

We have that 

P = ∑
m∈ℤn

smαm, αm := ∏
i

αmi
i Newt P = Conv{m s . t . sm ≠ 0}

Newt P = {z, dρ − ρ ⋅ z ≥ 0}

Trop P(ρ) = dρ



Newton Polytopes
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, P = 1 + x + y + xy ⇒ Newt P = {x ≥ 0, 1 − x ≥ 0, y ≥ 0, 1 − y ≥ 0} Trop P = max(0,x, y, x + y)

Newt P =

It turns out that  is piecewise linear on the normal fan of   

This is the collection of cones  formed by linear functionals  extremized at a common face 

Trop P Newt P

σ ρ ⋅ z Fσ ⊂ ∂ Newt P

Trop P =

1

1
xy0

0



Newton Polytope & Local Behaviour
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We will introduce a further notion that will play an important role in the construction of counter-terms

P = ∑
m∈Newt P

smαm ⇒ P |ρ = ∑
m∈(Newt P)|ρ

smαm Boundary of  where 
 is extremized

P
ρ ⋅ y

In other words,  is obtained by keeping only the monomials of  that lie on the face  of the polytope where  is extremizedP |ρ P Fρ ρ

The restriction (or initial form) of P captures its behaviour around the boundary αi ∼ λ−ρi, λ → 0

P(αiλ−ρi) = λ−Trop P(ρ)P |ρ (1 + 𝒪(λ))



Back to tropicalization
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Understanding the tropicalization of a combination of integrands  is considerably harder 

This is because, in general, we can only say that  

To compute  we need to introduce the operator  which returns a Puiseux series via

ℐ = ∑
i

ℐi

Trop ( f − g) ≤ max(Trop f, Trop g)

Trop ℐ τρ

τρℐ(αλ−ρ) = τρλ−Trop ℐ(ρ)ℐ |ρ (1 + 𝒪(λ)) = λ−Trop ℐ(ρ)ℐ |ρ τλ(1 + 𝒪(λ))

We compute  by applying  to each integrand and collecting the leading term in the resulting seriesTrop ∑
i

ℐi τρ



Commutativity of Series
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The operators  satisfy an important property 

We have that and  commute when acting on  if and only if the vectors  are compatible with respect to  

(Reminder: two vectors are compatible if they are extremized at a common face) 

This is essentially follows from the same property being satisfied by the operation  

This trivially follows from the fact that “restricting on a face common to several facets“ does not depend on the order of the facets 

Note: the above property is crucial in Sector Decomposition, and will be in our subtraction scheme

τρ

τρ τρ′￼
ℐ ρ, ρ′￼ Newt ℐ

ℐ → ℐ |ρ



Outline
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1. Tropical Geometry 101 

2. A subtraction scheme 

3. Some examples



Setup
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Let  be an Euler integrand and suppose that it has only logarithmic divergences, i.e.  

By applying Nilsson-Passare analytical continuation we can always reduce to this case 

Let  be the rays which are normal to  on which , i.e. the divergent directions 

We will denote by  the collection of cones formed by these divergent directions 

Let us assume that  for all  we can find a vector  such that  for all  compatible with  

In general this is not the case, our subtraction scheme only applies to integrands satisfying this geometric property

ℐ Trop ℐ = a + 𝒪(ϵ), a ≤ 0

Σdiv(1) Newt ℐ a = 0

Σdiv

ρ ∈ Σdiv(1) wρ wρ ⋅ ρ′￼ = − δρ,ρ′￼
ρ′￼∈ Σdiv(1) ρ



Counter-terms
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As a first guess, let us consider the counter-term to fix a divergence associated with  

Accordingly, we set  , and ask ourselves if  with  

While the condition holds on  , the counterterm is divergent on new directions which would require further counter-terms… 

Let us modify the counter-term to   

The extra factor  guarantees that the counter-term is divergent only on rays which are compatible with  

This we can fix by adding further counter-terms that corresponds to higher dimensional cones of  

ℐρ = ℐ |ρ ρ ∈ Σdiv(1)

ℐren = ℐ − ℐρ Trop ℐren = a + 𝒪(ϵ) a < 0

ρ

ℐρ = (1 + αw
ρ )

−1+ϵ
ℐ |ρ

vρ = (1 + αwρ) ρ

Σdiv



The renormalization map
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Given an Euler integrand  satisfying the geometric property, we define   ℐ

ℐren = ∑
σ∈Σdiv

(−1) ∏
ρ∈Rays σ

v1+ϵ
ρ ℐ |σ

The first main result is that the above is locally finite



A sketch of the proof
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As a toy example consider a case with Σdiv = {0,ρ1, ρ2, (ρ1, ρ2)}

ℐren = ℐ − ℐρ1
− ℐρ2

+ ℐ(ρ1,ρ2)

Computing  on any ray  requires applying   collecting the leading term of the resulting series 

The terms of order  cancel, because the integrands all have same initial form:   

It follows that the leading term is of order , with 

Trop ℐren ρ ∈ (ρ1, ρ2) τρ

𝒪(ϵ) ℐ |(ρ1,ρ2)

a + 𝒪(ϵ) a < 0



Integrating the counter-terms
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The counter-terms are simpler than the original integrand, which allows to integrate them exposing the poles in  

This is due to the fact that their Newton polytopes are lower dimensional, by construction 

This implies that   is homogeneous under rescaling  

The integral in the  direction can be performed trivially

ϵ

ℐ |ρ α → αλ−ρ

λ



Final Result
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Outline
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1. Tropical Geometry 101 

2. A subtraction scheme 

3. Some examples



Simplest Example
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Simplest Example
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An angular integral
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Angular integrals are important building blocks often appearing in phase-space integrations 

In 2405.13120 was presented a parametrization in terms of Euler integrals. Here’s a non-trivial example (4 propagators, one mass) 

While the above does not immediately satisfies the geometric property, it can reduced by Nilsson-Passare to one that does. 

The resulting integrals can be performed with HyperInt. For the most complicated part we find (full result available upon request)

(Thanks to V. Smirnov and F.Wunder for spotting a few mistakes numerically)



Other Examples
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Future Directions

1. Beyond “Geometrical Property“? 

2. Expansion in multiple regulators (disentangle logs in Method of Regions)? 

3. How to compute the integrals? Tropical Sampling [Borinsky] / Differential Equations 

4. Interaction with Curve Integral formalism (2309.15913): remove divergences locally without Feynman diagrams?

Thanks for your attention!


