

Recent Results and Ongoing Projects within NNPDF

Juan Rojo, VU Amsterdam & Nikhef

PDF4LHC Working Group Meeting, CERN, 2nd December 2024

NNPDF Timeline

What comes next?

Oct 2024: GPU-	Nov 2024: Global PDF fits
based ML hyperopt	confront precision LHC data
Nov 2024: Combination	ation of
aN ³ LO PDFs for High	ggs physics
WIP: $\alpha_s(m_Z)$ fit based on	WIP: Methodological
aN³LO+QED theory &	studies within and
closure-tested	beyond NNPDF
₩IP: Closure tes	sts with

built-in inconsistencies

WIP: a new NNPDF release combining all these developments!

this talk

Oct 2024: GPU-

based ML hyperopt

this talk

Nov 2024: Global PDF fits

confront precision LHC data

Nov 2024: Combination of aN³LO PDFs for Higgs physics

WIP: $\alpha_s(m_Z)$ fit based on **aN³LO+QED theory** &

closure-tested

WIP: Methodological

studies within and

beyond NNPDF

WIP: Closure tests with

built-in inconsistencies

WIP: a new NNPDF release combining all these developments!

🟺 Oct 2024: GPU-			🟺 Nov 2024: Global PDF fits					
based ML hyperopt		Giacomo's talk	cc	onfront precision LHC data				
Roy's talk	⊌ No aN ³	v 2024: Combination of LO PDFs for Higgs phys	sics	Mark, James, Tommaso, Luigi,				
WIP: $\alpha_s(m_Z)$ fit based on aN ³ LO+QED theory & closure-tested				WIP: Methodological studies within and beyond NNPDF				
	Ģ	WIP: Closure tests with built-in inconsistencies	5					
		Stefano's talk						
@ DIS 2025! WIP: a new NNPDF release combining all these developments!								

Parton Distributions Confront LHC Data: a Quantitative Appraisal

Chiefa, Costantini, Cruz-Martinez, Nocera, Rabemananjara, Rojo, Sharma, Stegeman, Ubiali, **arXiv:2412.aaaaa**

Motivation

Reducing PDF uncertainties entering LHC predictions requires an **in-depth understanding of the differences and similarities between PDF analysis**

Relevant for Drell-Yan

Relevant for top & jets

Motivation

Reducing PDF uncertainties entering LHC predictions requires an **in-depth understanding of the differences and similarities between PDF analysis**

-					
	PDF set	$\alpha_{\rm s}(m_Z)$	PDF uncertainty	$g [\text{GeV}^2]$	$q [\text{GeV}^4]$
baseline	MSHT20 [37]	0.11839	0.00040	0.44	-0.07
	NNPDF4.0 [<mark>84</mark>]	0.11779	0.00024	0.50	-0.08
	CT18A [29]	0.11982	0.00050	0.36	-0.03
	HERAPDF2.0 [65]	0.11890	0.00027	0.40	-0.04

ATLAS strong coupling extraction from Z $p_{\rm T}$ data at 8 TeV

 $\Delta_{\text{PDF}} (\text{MSHT20 only}) = 0.34 \%$ $\Delta_{\text{PDF}} (\text{NNPDF4.0} - \text{CT18A}) = 1.6 \%$

What is the ``true PDF uncertainty" that should be associated to this measurement? How to choose ``baseline PDF" ? Is this an unbiased choice?

Is in-situ profiling of PDFs always justified? Back-reaction to other experiments in global fit?

Motivation

CMS determination of the weak mixing angle at 13 TeV

ATLAS determination of the W boson mass

CMS determination of the *W* boson mass

Settings

Process	Experiment	Final State	Observable	\sqrt{s} (TeV)	\mathcal{L} (fb ⁻¹)	$n_{ m dat}$
	ATLAS	Z p_T spectrum	$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{dp_{T}^{\ell\ell}}$	13	36.1	38
$W_{-}Z$	ATLAS	Z incl. prod.	$\frac{d\sigma}{d u_{\ell}e }$	8	20.2	7
11,2	CMS	W incl. prod.	$\frac{d\sigma}{d \eta_{\ell} }$	13	35.9	36
	LHCb	Z incl. forward prod.	$\frac{d\sigma}{dy_Z}$	13	5.1	17
	ATLAS	incl. jet $R = 0.4$ (0.7)	$rac{d^2\sigma}{dp_T^j d y_j }$	13	3.2	177
LHC jets	ATLAS	di-jets $R = 0.4$	$\frac{d^2\sigma}{dm_{ij}d y^* }$	13	3.2	136
	CMS	incl. jets $R = 0.4$ (0.7)	$\frac{\frac{d^2\sigma}{dp_T^j d y_j }}{\frac{dp_T^j}{dp_T^j}}$	13	36.3 (33.5)	78
	H1	incl. jet (low Q^2)	$rac{d^2\sigma}{dQ^2dp_T^j}$	0.319	0.29	48
	H1	di-jets (low Q^2)	$rac{d^2\sigma}{dQ^2d\langle p_T angle_2}$	0.319	0.29	48
DIS jota	H1	incl. jet (high Q^2)	$rac{d^2\sigma}{dQ^2dp_T^j}$	0.319	0.351	24
$\begin{array}{c c} H1 & \text{incl. jet (low Q^2)} \\ H1 & \text{di-jets (low Q^2)} \\ H1 & \text{incl. jet (high Q^2)} \\ H1 & \text{di-jets (high Q^2)} \\ ZEUS & \text{incl. jet} \\ ZEUS & \text{incl. jet} \\ ZEUS & \text{di-jets} \\ \end{array}$	H1	di-jets (high Q^2)	$\frac{d^2\sigma}{dQ^2d\langle p_T angle_2}$	0.319	0.351	24
	ZEUS	incl. jet	$rac{d^2\sigma}{dQ^2dE_{\pi}^j}$	0.3	0.038	30
	ZEUS	incl. jet	$\frac{\frac{d^2\sigma}{dQ^2dE_{\pi}^j}}{\frac{dQ^2dE_{\pi}^j}{dQ^2dE_{\pi}^j}}$	0.319	0.082	30
	$rac{d^2\sigma}{dQ^2d\langle E_T angle_2}$	0.319	0.374	22		
	ATLAS	hadronic	$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{dm_{t\bar{t}}}$	13	36.1	9
			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{d y_{t\bar{t}} }$	13	36.1	12
			$\left(\frac{1}{\sigma}\right) \frac{d^2\sigma}{d y_{t\bar{t}} dm_{t\bar{t}}}$	13	36.1	11
	ATLAS	$\ell + ext{jets}$	$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{dm_{t\bar{t}}}$	13	36.1	9
			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{dp_{T,t}}$	13	36.1	8
top-pair			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{d y_t }$	13	36.1	5
			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{d y_t \overline{t} }$	13	36.1	7
	CMS	$\ell + ext{jets}$	$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{dm_{t\bar{t}}}$	13	137	15
			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{dp_{T,t}}$	13	137	16
			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{d y_{t\bar{t}} }$	13	137	10
			$\left(\frac{1}{\sigma}\right) \frac{d\sigma}{d y_t }$	13	137	11
			$\left(\frac{1}{\sigma}\right) \frac{d^2\sigma}{d y_{t\bar{t}} dm_{t\bar{t}}}$	13	137	35

NNLO fast grids for all processes (no *K*-factors)

Datasets based on highest lumi, no overlap with inputs in considered PDF fits

Include all sources of experimental & theory uncertainties

For datasets with unstable covariance matrix, apply regularisation prescription

$$\chi^2_{\text{exp+th}} = \sum_{i,j=1}^{n_{\text{dat}}} \left(T_i^{(0)} - D_i \right) \left(\left(\text{cov}_{\text{exp}} + \text{cov}_{\text{mho}} + \text{cov}_{\text{pdf}} + \text{cov}_{\text{as}} \right)^{-1} \right)_{ij} \left(T_j^{(0)} - D_j \right)$$
The prescription

Results

- For each dataset, **evaluate** χ^2 **breakdown** and data vs theory comparison plots (with shifted systematics)
- 9 different PDF sets considered, extension to other PDF sets straightforward (fast NNLO QCD grids)

For ABMP16, set with $\alpha_s(m_Z) = 0.118$ adopted

		ABMP16	CT18	CT18A	CT18Z	MSHT20	NN3.1	NN4.0	PLHC15	PLHC21
ATLAS incl. jet	$\chi^2_{ m exp+th}$	1.84	1.56	1.64	1.38	1.67	1.21	1.51	1.20	1.25
	$\chi^2_{ m exp}$	2.32	2.48	2.47	2.50	2.53	2.98	1.95	3.02	2.40
CMS incl. jet	$\chi^2_{ m exp+th}$	1.65	1.26	1.26	1.19	1.44	1.50	1.33	1.25	1.25
	$\chi^2_{ m exp}$	2.10	2.34	2.31	2.03	2.41	2.28	1.70	2.46	2.15
ATLAS dijet	$\chi^2_{\rm exp+th}$	1.12	1.08	1.09	1.05	1.16	1.09	1.15	1.01	0.96
	$\chi^2_{ m exp}$	1.35	1.49	1.47	1.48	1.41	1.37	1.29	1.42	1.41

Results

Despite PDF
 differences, no
 systematic outlier in
 dataset description

Fully accounting for theory errors crucial

PDF4LHC21 represents the ``average" behaviour

Jet data offers good discrimination power

 $\Delta \chi^{2(i)} = \frac{\chi^{2(i)}_{\rm exp+th} - \left\langle \chi^2_{\rm exp+th} \right\rangle_{\rm pdfs}}{\left\langle \chi^2_{\rm exp+th} \right\rangle_{\rm pdfs}}$

Take-away lesson

Reducing PDF uncertainties entering LHC predictions requires an **in-depth understanding of the differences and similarities between PDF analysis**

Despite NNPDF4.0 displaying smaller PDF uncertainties as compared to other fits, its agreement with Run II data is of comparable quality (or even better!)

falsifying the claim that NNPDF4.0 errors are somehow ``underestimated"

Ensemble-based hyperoptimization in ML

Cruz-Martinez, Jansen, van Oord, Rabemananjara, Rocha, Rojo, Stegeman, **arXiv:2410.16248**

Hyperoptimisation in Machine Learning

- ML applications rely on a large number of hyperparameters which are not fixed by the training algorithm: architecture, optimiser, initialisation, stopping, activation functions ...
- Subscription Choosing hyperparameters is a challenge in many cases. Bias-free optimisation is crucial!

Hyperoptimisation in Machine Learning

NNPDF4.0

Partition global dataset into n folds

Exclude one fold at a time, perform n fits

Select hyperparameters leading to best χ^2 to the non-fitted data

Based on central PDF fit

$$\varphi_{\chi^2}^2 \equiv \left\langle \chi^2 \left[T, D^{(0)} \right] \right\rangle_{\rm rep} - \chi^2 \left[\left\langle T \right\rangle_{\rm rep}, D^{(0)} \right]$$

 $\varphi_{\chi^2}^2 = \frac{1}{n_{\text{dat}}} \sum_{i,j=1} (\text{cov})_{ij}^{-1} T_{ji}$

 $L_{\text{hopt}}^{(\varphi^2)}\left(\hat{\boldsymbol{\theta}}\right) \equiv \left(\frac{1}{n_{\text{fold}}}\sum_{n=1}^{n_{\text{fold}}}\varphi_{\chi_p^2}^2\left(\hat{\boldsymbol{\theta}}\right)\right)^{-1}$

This work

- Select hyperparameters leading to best χ^2 & largest PDF errors in non-fitted data
- e.g. models with the best generalisation power are selected

Requires major restructure of NNPDF code to be able to train multiple ML models in parallel

> netherlands Science center

GPU-optimised NNPDF fits

Speed up by a factor 200 from new GPU-optimise NNPDF code

Memory usage kept under control, independent of number of models trained in parallel

Up to 90% energy reduction: faster, more affordable, and more sustainable ML model training!

Results

Select not the best single set of hyperparameters but **instead randomly sample over the complete population of acceptable hyperparameters** displaying comparable performance

Impact on LHC predictions

Despite radical change in hyperparameter determination methodology, excellent consistency

with NNPDF4.0 & moderate increase of PDF errors: non-trivial validation of NNDF robustness

What's next?

Towards the next NNPDF release

The developments presented in this talk and in the rest of NNPDF-related talks in the workshop will in the next months be combined **towards a new main NNPDF release**

Theory Calculations

- NNLO fast interpolation grids for hadronic processes
- Remove NNLO K-factors from fit
- aN³LO+QED with MHOUs as default theory baseline
- Solution $\mathbf{P}_{ij}^{(3)}(x)$ Move to latest version of Moch et al $P_{ij}^{(3)}(x)$
- Numerical FONLL as general-mass VFN

Experimental Data

- Most recent LHC Run-2
 datasets, including some
 based on full luminosity
- Many of them ready to go from our PDF appraisal study
- HERA DIS+jets part of the baseline dataset
- Novel standardised data format enabling versioning & metadata

Methodology

- New GPU replica-based hyperopt, different ML model per replica
- Validation on (inconsistent)
 closure tests and future tests
- Feature Scaling, remove large-x pre-processing
- Updated theory pipeline based on EKO + YADISM + PineAPPL

Towards the next NNPDF release

DEIVIE LIE

		INCLUSIVE DIS				
Experiment ID	Description	Publication	Hepdata			
JLAB	Proton, Deuteron and neutron structure function data from JLAB	Paper	Accardi, tarball here			
CHORUSDM	CHORUS dimuon production measurements	Paper	Paper			
CDHSW	A measurement of differential cross sections and nucleon structure functions in charged current polytics interactions	Paper	Hepdata			
	on iron (F2p, F3p)					
CCFR/Nutev	Measurements of F2 and F3 (neutrino) -	Paper1	Hepdata			
	F3(antineutrino) from CCFR (anti)neutrino- Fe data	Paper2				
ZEUS	Event count at large x	Paper				
		DRELL YAN, V	pT, and DIBOS			
Experiment ID	Description	Publication	Hepdata			
ATLAS_WZ_276TEV_RAP	ATLAS W, Z inclusive production at 2.76 TeV: fiducial xsecs and asymmetries	Paper	n/a			
ATLAS WZ5TEV	ATLAS W and Z production, 5 TeV (25 pb ⁻¹) total and differential xsec	Paper	Paper			
ATLASZJETS8TEV	ATLAS Z+jets at 8 TeV	Paper				
ATLAStbd8TEV	ATLAS Z full phase- space, 2D (pTZ,yZ) xsec, 8 TeV, 20 fb ⁻¹	Paper				
ATLASZJET13TEV	ATLAS Z+jet at 13 TeV	Paper	Paper HepData			
ATLASWW13TEV	ATLAS WW cross section at 13 TeV, 3.12 fb ⁻¹	Paper	HepData			
ATLAS_Zjet_13TEV	ATLAS Z+jet at 13 TeV	Paper				

https://www.wiki.ed.ac.uk/display/nnpdfwiki/List+of+experiments+for+NNPDF4.1

			end Jan 2020.
ATLAS_WC_13TEV	ATLAS W+charm at 13 TeV 140 fb-1	Paper	
CMSZPHI8TEV	CMS Z Phi* distributions 8 TeV (19.7 fb-1)	Paper	CMS page
CMS_WPT_8TEV	CMS W pt distribution, 8 TeV (18.4 fb ⁻¹)	Paper	Hepdata
CMS_WC_8TEV	CMS W+charm at 8 TeV (18.4 fb ⁻¹)	Paper	
CMS_tbd_8TEV	CMS forward- backward asymmetry in Z production at 8 TeV (18.4 fb ⁻¹)	Paper	
CMS_Zjet_13TEV	CMS Z+jet at 13 TeV	Paper	
CMS_Zb_13TEV CMS_Zc_13TEV CMS_Zcbratio_13TEV	CMS Z+b and Z+c at 13 TeV	Paper	
CMS_DY_DIFF_13TEV	CMS differential DY cross sections at 13 TeV, 3 fb-1	Paper	
CMS_W2D_13TEV	CMS double differential cross- sections for W production at 13 TeV and 35.9 fb ⁻¹ double differential in pT^lepton and y_lepton Also helicities and charge-asymmetry	Paper	
CMS_WC_13TEV	CMS differential distributions (lepton rapidity and pT) in W+c production at 13 TeV and 138 fb ⁻¹	Paper	
CMS_ZC_13TEV	CMS measurement of Z+charm as a function of Z pT at 13 TeV and 36 fb ⁻¹	Paper	
LHCb_tdb_TEV	LHCb inclusive Z production and differential distributions at 5 TeV	Paper	
LHCb_Z_dimuons_13TEV_RunII	LHCb inclusive Z production at 13 TeV, full Run II luminosity	Paper	
		PHOTON	PRODUCTIO
Experiment ID	Description	Publication	Hepdata
CDFINCLPHOT	CDF inclusive photon cross-section	Paper	
ATLASPHT11	ATLAS isolated photon production 7 TeV, 4.6 fb ⁻¹	Paper	<u>HepData</u>
ATLASDIPHOT8TEV	ATLAS diphoton differential	Paper	HEPData

all datasets studied in the ``appraisal" paper and many more, NNLO fast grids as baseline

ATLAS_PHT_13TEV	ATLAS isolated photon production 13 TeV, 139 fb ⁻¹	Conf note	
CMSPHT11	CMS isolated photon production 7 TeV, 36 pb ⁻¹	Paper	
CMSPHT15	CMS isolated photon production 13 TeV, 2.3 fb ⁻¹	Paper	
		INCLUSIVE J	ET PRODUC
Experiment ID	Description	Publication	Hepdata
ATLAS3JET11	ATLAS three jet production 7 TeV, 5 fb ⁻¹	Paper	
ATLASJET13TEV	ATLAS inclusive jet and dijet cross- sections at 13 TeV 3.2fb ⁻¹	Paper	HepData
ATLASJET13TEV	ATLAS inclusive jet and dijet cross- sections at 13 TeV 3.2fb ⁻¹	Paper	HepData
ALICE_1JET_5TEV	ALICE inclusive jet production at 5.02 TeV	Paper	
CMS_1JET_13TEV	CMS inclusive jet production at 13 TeV, 36.3 fb ⁻¹	Paper	HepData
		TOP PAIR	PRODUCTI
Experiment ID	Description	Publication	Hepdata
CMS_TTB_DIFF_13TEV	CMS single and double differential distributions in the lepton+jet channel 13 TeV 137 fb ⁻¹	Paper	HepData
ATLAS_TTB_DIFF_PT_NORM_13TEV ATLAS_TTB_DIFF_PT_13TEV ATLAS_TTB_DIFF_TRAP_NORM_13TEV ATLAS_TTB_DIFF_TRAP_13TEV ATLAS_TTB_DIFF_TTRAP_NORM_13TEV ATLAS_TTB_DIFF_TTRAP_13TEV ATLAS_TTB_DIFF_TTM_NORM_13TEV ATLAS_TTB_DIFF_TTM_13TEV	ATLAS single differential distributions of top- pair production in the lepton+jet channel 13 TeV, 36 fb ⁻¹	Paper	HepData
ATLAS_TTB_DIFF_13TEV_140fb	ATLAS single and double differential distributions of top- pair production in the di-lepton channel (particle level) 13 TeV, 36 fb ⁻¹	Paper	
ATLAS_2D_TTBAR (various distributions)	ATLAS single and double differential distributions of top-	Paper	n/a

	13 IEV, 30 ID		
ATLAS_INCL_TOPTOZ_RATIO_7TEV	ATLAS top-quark pair to Z-boson cross-section ratios, 7 TeV	Paper	Hepdata
ATLAS_INCL_TOPTOZ_RATIO_8TEV	ATLAS top-quark pair to Z-boson cross-section ratios, 8 TeV	Paper	Hepdata
ATLAS_INCL_TOPTOZ_RATIO_13TEV	ATLAS top-quark pair to Z-boson cross-section ratios, 13 TeV	Paper	Hepdata
ATLAS_TTBAR_TOT_7TEV_LJET	ATLAS top-pair production total cross section, lepton+jets, 7 TeV 4.6 fb ⁻¹	Paper	

Summary and outlook

M Lots of progress in the NNPDF global analysis framework and related studies: **aN³LO+QED PDFs**, their combinations, and the associated $\alpha_s(m_Z)$ extraction, methodological studies, inclusion of novel datasets with fast NNLO interpolation grids

A quantitative appraisal of PDF fits with precision LHC data does not indicate better agreement with the data for any specific PDF set, despite the underlying differences

Improved hyperoptimisation demonstrates the robustness of the NNPDF uncertainty estimate. As a non-trivial bonus, GPU-optimised code displays now major speedups.

These developments will be combined in the coming months, aiming to for a new release of the NNPDF global fit.

Summary and outlook

In the NNPDF global analysis framework and related studies: **aN³LO+QED PDFs**, their combinations, and the associated $\alpha_s(m_Z)$ extraction, rids methodological studies, inclusion of novel datasets with fast NNLO interpole

 A quantitative appraisal of PDF fits with precise agreement with the data for any second and an any second and an any second and any second any second and any second and any second and any second any second and any second any second any second any second and any second any s a bonus, GPU-optimised code displays now major speedups.

These developments will be combined in the coming months, aiming to for a new release of the NNPDF global fit.

Extra Material

Results

Despite radical change in hyperparameter determination methodology, **excellent consistency** with NNPDF4.0 & moderate increase of PDF errors: non-trivial validation of NNDF robustness

ATLAS 8 TeV Z rapidity distributions

arXiv:2309.09318

Reanalysis of Z production at 8 TeV (2012 dataset), on full phase space (not fiducial) of charged leptons.

(Same dataset as for $\alpha_s(m_Z)$ extraction)

Overlaps with arXiv:1710.05167, included in MSHT20 and NNPDF4.0

NNPDP4.0	0118	MSHIZU	PDP4LNC21	I	NNPDF4	.0				in fit		in fit	
			NNLO								W	with mhou	
- PDF(a): NNPDF4.0 NNLO baseline.			Datasat		$\mathbf{PDF}(\mathbf{a})$	PDF(b)	PDF(a)	DDE(9)	$\mathbf{PDF}(\mathbf{a})$	PDF(f)	PDF(a)	DDF(h)	
- PDF(b): NNPDF4.0 aN3LO (including MHOUs) [105].				FDF (a)		PDF(c)	r Dr (u)	r Dr (e)	I DF(I)	I DF (g)			
- PDF(c): NNPDF4.0 NNLO including MHOU	ls [97].			$\chi^2_{ m exp}$	7.902	8.424	8.383	8.774	7.238	3.492	0.175	3.357	
- PDF(d): NNPDF4.0 NNLO including QED c	corrections $[102]$.		$ y_{\ell\bar{\ell}} $ (2023 paper [38])	2	2 005	9 917	2 220	2 020	9 491	0 020	0 169	2 002	
- PDF(e): NNPDF4.0 NNLO excluding the AT	TLAS 2017 Z produ	ction dataset $[68]$.		$\chi_{ m exp+th}$	3.820	3.317	0.029	3.932	0.401	2.230	0.108	2.005	
- PDF(f): Same as PDF(e) now including the A	ATLAS 2023 Z proc	duction dataset [38]	(2017 man an [62])	$\chi^2_{ m exp}$	1.227	1.179	1.112	1.248	1.244	1.276	1.413	1.168	
- $\mathrm{PDF}(\mathrm{g})\text{:}$ Same as $\mathrm{PDF}(\mathrm{f})$ now with a larger v	weight applied to th	e data from $[38]$.	$ y_{\ell\bar{\ell}} $ (2017 paper [08])	$\chi^2_{\rm arm}$, th	1.079	1.048	1.014	1.088	1.085	1.059	1.018	1.008	
- PDF(h): Same as PDF(f) now including MH0	OUs.			/vexp+th									

Improved χ^2_{exp+th} once accounting for **MHOU** and **aN³LO corrections**

Improved χ^2_{exp+th} once included with fit, specially with MHOU $(n_{\sigma} \sim 2)$

Weighted fit indicates some tension with other DY datasets e.g. LHCb W,Z

Results

Despite PDF differences, no systematic outlier in dataset description

Fully accounting for theory errors crucial

PDF4LHC21 in general represents the ``average'' behaviour

ABMP16 unfavored by jet data

Breakdown of contributions to χ^2_{exp+th} for PDF4LHC21