Combination of aN³LO PDFs and implications for Higgs production

Giacomo Magni PDF4LHC 2024, 2 December 2024

Based on:

[arxiv.org:2411.05373]

In collaboration with: T. Cridge, L.A. Harland-Lang, J.McGowan, R.S. Thorne, R.D. Ball, A. Candido, S. Carrazza, J. Cruz-Martinez, L. Del Debbio, S. Forte, F. Hekhorn, E.R. Nocera, T.R. Rabemananjara, J. Rojo, R. Stegeman, and M. Ubiali

E-mail: gmagni@nikhef.nl

Going beyond NNLO PDFs

- With these goals in mind MSHT and NNPDF have published approximate N³LO PDFs, where besides the available information we introduce an estimate of PDF theory uncertainties.
- In both cases variants including photon PDF, computed with LuxQED formalism, are also available.
- These studies suggest that the impact of aN³LO PDFs lead to sizeable changes in standard LHC cross-sections (e.g. Higgs).

PDFs accuracy and their uncertainties are nowadays a **limitation** for many **precisions LHC analysis**.

Effects **beyond NNLO QCD** corrections, **QED** corrections, and possibly **theoretical uncertainties** should be taken into account during PDF fits.

OUTLINE

- Which N³LO corrections (relevant for PDF fits) are known?
- Which corrections are included in MSHT20 and NNPDF40 aN³LO?
- The combined MSHT20xNNPDF40_an31o and MSHT20xNNPDF40_an31o_qed PDF sets.
 - What is the **effect of more recents DGLAP** N³LO corrections to our PDF fits? Are aN^3LO PDFs stable?

N³LO corrections and PDF fits

- DGLAP evolution: accurate numerical approximations N³LO splitting functions (10 lowest moments, large-x and small-x limits).
- Matching conditions: all the relevant terms are now known (all exact, $a_{H_{\varrho}}^{(3)}$ parametric).
- DIS coefficients: massless coefficients (both NC and CC) are known. Massive NC can be approximated.
- Hadronic coefficients: some DY coefficients are known, but not yet available in a format suitable for PDFs fits (besides the k-factor). Corrections to Jets and $t\bar{t}$ processes are still unknown.

See slide 17 for complete list of references.

See J. Blümlein talk

From: [arxiv:2302.07593],[arxiv:2307.04158] [arxiv:2404.09701] [arxiv:2410.08089].

MSHT20 and NNPDF40 aN³LO

Both studies include all the available N³LO informations by the time of publication.

MSHT20 aN3LO [arxiv:2207.04739]

- Splittings functions: in-house approximation. Singlet sector: 4
 moments. Non-singlet: 8 moments + large-x and small-x limits.
- Matching conditions: $a_{Hq}^{PS(3)}$, $a_{gq,H}^{(3)}$ exact, $a_{qq,H}^{NS,(3)}$, $a_{gg,H}^{(3)}$, $a_{Hg}^{(3)}$ approximated.
- DIS: approximated massive NC corrections. Extended TR scheme.
- Theory uncertainties: incomplete N³LO unc. and missing higher orders unc. computed with nuisance parameters.
- Hadronic processes: approximated K-factors.

NNPDF40 aN3LO [arxiv:2402.1863]

- Splittings functions: in-house approximation, based on all the current known terms, but $P_{gq}^{(3)}, P_{gg}^{(3)}$ only with 5 moments.
- Matching conditions: all up to date, but superseded $a_{H_{\varphi}}^{(3)}$.
- DIS: approximated massive NC corrections. Extended FONLL scheme.
- Theory uncertainties: computed with a covariance matrix, incomplete N³LO unc. from parametric variations, missing higher orders unc. from scale variations.
- Hadronic processes: NNLO scale variations as proxy for incomplete N³LO.

eme. orders

5

MSHT20 and NNPDF40 aN³LO

MSHT20 and NNPDF4.0 aN3LO relies on **different methodologies**: kinematic coverage, fitting methodology, input parameters, fitted charm...

- Most of the differences are already present at NNLO.
- ► The largest aN³LO effects are visible in the gluon, where MSHT favors a larger suppression.

However, the shape of $aN^3LO / NNLO$ ratio is similar.

NNPDF4.0 $aN^{3}LO / NNLO$

$MSHT20 aN^{3}LO / NNLO$

The combined aN³LO set [arxiv.org:2411.05373]

As differences persist, in order to provide a **conservative estimate of PDFu and gain in accuracy,** we can construct an unweighted combination the 2 PDFs set:

$MSHT20xNNPDF40_an3lo$

- Same approach ad for PDF4LHC
 combinations: merge N_{rep} = 100 replicas from the
 the 2 original sets.
- Variants with QED effects (and NNLO) are also available.
- Can be easily extended to other aN3LO PDF
 Reference
 Reference
- Caveat: no attempt to minimize input differences.
 Combination set must be used only for sufficiently high Q² scales.

Benchma

New aN³

	PDF set	pert. order (PDF)	
rence>	PDF4LHC21_mc	$NNLO_{QCD}$	
ark sets →	MSHT20xNNPDF40_nnlo	$NNLO_{QCD}$	
	MSHT20xNNPDF40_nnlo_qed	$ $ NNLO _{QCD} \otimes NLO _Q	
³ LO sets>	MSHT20xNNPDF40_an3lo	$aN^{3}LO_{QCD}$	
	$MSHT20xNNPDF40_an3lo_qed$	$\mathrm{aN^{3}LO_{QCD}\otimes NLO_{QCD}}$	

х

The combined aN³LO set: luminosities

- Larger effect w.r.t PDF4LHC21 is visible in the gluon-gluon luminosity, suppression of $\approx 3\%$.
- At high invariant mass QED effects are also sizeable for the gluon.
- QED corrections are similar in magnitude to aN³LO effects especially for in the quark sector.
- Differences between NNLO PDF
 combination and PDF4LHC21 is smaller
 than the the aN³LO NNLO PDF shift.

aN³LO PDFs and Higgs cross-sections

In Higgs gluon fusion:

- At NNLO: PDF4LHC21 very close to MSHTxNNPDF
- aN³LO (+QED) PDF corrections: -3.5%
 (-5%)
- MSHT20 aN³LO and NNPDF40 aN³LO are within 2σ (PDFu).

In Higgs VBF:

- ► At NNLO: PDF4LHC21 is -1.8 % lower than MSHTxNNPDF
- aN³LO (+QED) PDF corrections: +2.5%
 (+2.5%)
- MSHT20 aN³LO and NNPDF40 aN³LO are within 1σ (PDFu).

Predicting higher order effects

- ► To **compute** N³LO cross sections more precisely.
- **calculation**. For example, if we consider:

$$\Delta_{\text{NNLO}}^{\text{exact}} \equiv \left| \frac{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}} - \sigma_{\text{N}\text{N}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}}}{\sigma_{\text{N}^{3}\text{LO}-\text{PDF}}^{\text{N}^{3}\text{LO}}} \right|$$

previously ext

In **Higgs production**, both gluon fusion and VBF:

- , the approximate estimate Δ_{NNLO}^{app} is very unreliable, and specifically it underestimates Δ_{NNLO}^{exact}
- difference between weighted and unweighted combination aN³LO PDF combination $\mathcal{O}(1\%)$ is smaller than the shift from NNLO to aN³LO PDFs $\mathcal{O}(3\%)$.

aN³LO PDFs can be used:

► To evaluate evaluate the effect of using NNLO PDFs in a N³LO

timated with:
$$\Delta_{\rm NNLO}^{\rm app} \equiv \frac{1}{2} \left| \frac{\sigma_{\rm NNLO-PDF}^{\rm NNLO} - \sigma_{\rm NLO-PDF}^{\rm NNLO}}{\sigma_{\rm NNLO-PDF}^{\rm NNLO}} \right|$$

PDF set	$\sigma(gg \to h)$	$\sigma(h \; { m VBF})$	
$\Delta_{\rm NNLO}^{\rm exact}$ (NNPDF4.0)	2.2%	1.3%	
$\Delta_{\rm NNLO}^{\rm exact}$ (MSHT20)	5.3%	2.3%	
$\Delta_{\rm NNLO}^{\rm exact}$ (combination)	3.3%	2.3%	
$\Delta_{\rm NNLO}^{\rm app}$ (NNPDF4.0)	0.2%	0.2%	
$\Delta_{\rm NNLO}^{\rm app}$ (MSHT20)	1.4%	1.3%	
$\Delta_{\rm NNLO}^{\rm app}$ (combination)	1.6%	0.5%	

In the last year, huge progress on the N^3LO splitting functions and and matching. For eg. NNPDF40 aN^3LO does not include:

- $P_{gq}^{(3)}, P_{gg}^{(3)}$ higher moments: [arxiv:2404.09701] [arxiv:2410.08089].
- ▶ Improved parametrization of $a_{H,g}^{(3)}$ [arxiv:2403.00513]

These results make the N³LO approximation error irrelevant down to $x \approx 10^{-4}$

From [arxiv:2403.00513]: red new parametrization, grey older approximation [arxiv:1205.5727]

See J. Blümlein talk

See J. Blümlein talk

What is the effect of more recents DGLAP N³LO corrections to our PDF fits? Are $aN^{3}LO$ PDFs stable ?

- Shifts are within within 1σ (2σ) of the published NNPDF40 aN³LO (MSHT20 aN³LO).
- Gluon $aN^3LO / NNLO$ ratios moves closer in the 2 fits.

- N³LO approximation error on DGLAP evolution is now negligible.
- For MSHT20: impact on Higgs gluon fusion cross-sections $\approx 1.0 \%$.
- For NNPDF40: impact on Higgs gluon fusion cross-sections ≈ 0.5 %. Below 0.1 % for VBF.

Results with MSHT20 and NNPDF40 aN³LO move closer.

What is the **effect of more recents DGLAP** N³LO corrections to our PDF fits? Are $aN^{3}LO$ PDFs stable ?

- Inclusion of corrections beyond NNLO accuracy in PDF fits is now possible. N³LO QCD corrections to DGLAP are now accurately known (up to $x \approx 10^{-4}$).
- These corrections are mandatory for **precise LHC phenomenology** (in particular Higgs boson production).
- We have proposed a first **combination set** based on 2 independent studies:

MSHT20xNNPDF40 an3lo, MSHT20xNNPDF40 an3lo qed

Working on inclusion of recent developments on N^3LO splitting functions and matching conditions. Preliminary results suggest stability of our aN³LO fits.

Summary

OUTLOOK

- **Inclusion of theory error** (both from incomplete terms and higher orders) is mandatory.

Working on the removal of NNLO k-factors and usage of full NNLO grids for hadronic processes.

Thank you for the attention!

N³LO corrections and PDF fits

DGLAP Splitting functions:

$$P_{ij} = \alpha_s P_{ij}^{(0)} + \alpha_s^2 P_{ij}^{(1)} + \alpha_s^3 P_{ij}^{(2)} + \alpha_s^4 P_{ij}^{(3)}, \quad i, j = q, g$$

- Large- n_f : $\mathcal{O}(n_f^3)$, $P_{NS}^{(n_f^2)}$ [arxiv:1610.07477]; $P_{qq,PS}^{(n_f^2)}$ [arxiv:2308.07958]; $P_{gq}^{(n_f^2)}$ [arxiv:2310.01245]
- NS small-x [arxiv:2202.10362]: $P_{NS}^{(3)} \supset \sum_{k=0}^{6} \ln^{k}(x)$ Singlet small-x [arxiv:1805.06460]: $P_{ij}^{(3)} \supset \sum_{k=0}^{3} \frac{\ln^{k}(x)}{x}$
- Large-*x* [arxiv:2205.04493], [arxiv:1911.10174], [arxiv:0912.0369]:

$$P_{ii}^{(3)} \approx A_{4,i} \frac{1}{(1-x)_{+}} + B_{4,i} \delta(1-x) + C_{4,i} \ln(1-x) + D_{4,i}$$
$$P_{ij}^{(3)} \approx \sum_{i=1}^{6} \ln^{k}(1-x)$$

 10 lowest Mellin Moments [arxiv:1707.08315] [arxiv:2111.15561], [arxiv:2302.07593],[arxiv:2307.04158],[arxiv:2310.05744]. More recent studies: [arxiv:2404.09701] [arxiv:2410.08089]. **PDFs matching conditions:**

$$\begin{pmatrix} g \\ \Sigma \\ h^+ \end{pmatrix}^{n_f+1} (\mu_h^2) = \mathbf{A}_{S,h^+}^{(n_f)}(\mu_h^2) \cdot \begin{pmatrix} g \\ \Sigma \\ h^+ \end{pmatrix}^{n_f} (\mu_h^2)$$

analytic results for all the terms are available: [arxiv:0904.3563], [arxiv:1008.3347],[arxiv:1402.0359], [arxiv:1409.1135],[arxiv:1406.4654], [arxiv:2211.0546],[arxiv:2311.00644], approximated results for $a_{H,g}^{(3)}$ [arxiv:2403.00513]

DIS coefficient functions:

$$C_{i,j} = \alpha_s^0 C_{i,j}^{(0)} + \alpha_s^1 C_{i,j}^{(1)} + \alpha_s^2 C_{i,j}^{(2)} + \alpha_s^3 C_{i,j}^{(3)}, \quad j = q, g$$

are known at N³LO in the massless limit γ/Z : [arxiv:9605317] [arxiv:0411112] [arxiv:2208.14325], W^{\pm} : [arxiv:1606.08907].

Massive contributions can be approximated from different known kinematic limit.

aN³LO DGLAP evolution benchmark

Cooper-Sarkar, Cridge, Giuli, Harland-Lang, Hekhorn, Huston, GM, Moch, Thorne [arxiv:2406.16188]

- **Benchmark**: comparison of aN³LO DGLAP evolution using different splitting **function** approximation, and different evolution codes: MSHT [arxiv:2207.04739], FHMRUVV [arxiv:1707.08315] [arxiv:2111.15561], [arxiv:2302.07593], [arxiv:2307.04158], [arxiv:2310.05744] ([arxiv:2404.09701])
- Effect of aN^3LO is within the 2%, except for small and large-x regions.
- Good agreement of our in-house approximations and FHMRUVV.
- Stability of different DGLAP solution methods has also been checked.

Relative difference Truncated vs Exact DGLAP evolution

Relative difference w.r.t NNLO evolution, VFNS $Q = 2 \rightarrow 100$ GeV

How does the approximation change if we add more test functions?

How does the approximation change if we add more Mellin moments?

LHC phenomenology: Drell-Yan

Process	NNPDF4.0				MSHT20						
	$\sigma~({ m pb})$	$\delta_{ m th}$	$\delta_{ m PDF}^{ m noMHOU}$	$\delta^{ m MHOU}_{ m PDF}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$	$\sigma~({ m pb})$	$\delta_{ m th}\sigma$	$\delta_{ m PDF}$	$\Delta^{ m app}_{ m NNLO}$	$\Delta_{ m NNLO}^{ m exact}$
W^+ (p)	$1.2 imes 10^4$	1.0	0.5	0.5	1.1	0.1	$1.2 imes 10^4$	1.9	1.7	2.3	0.8
$W^-~(\mathrm{p})$	8.8×10^3	1.0	0.5	0.5	1.1	0.1	$8.7 imes10^3$	1.9	1.6	2.1	0.0
Z (p)	1.9×10^3	0.9	0.4	0.5	1.1	0.3	1.9×10^3	1.8	1.6	2.6	0.3
$W^+~({ m hm})$	4.7×10^{-4}	2.8	2.8	3.3	3.2	1.1	4.6×10^{-4}	4.0	3.9	2.0	1.3
$W^-~({ m hm})$	$1.4 imes 10^{-4}$	2.9	2.9	3.3	3.3	0.1	$1.5 imes 10^{-4}$	4.2	4.2	2.0	0.6
Z ~(hm)	$2.1 imes 10^{-4}$	2.3	2.3	2.5	3.4	0.3	$2.2 imes 10^{-4}$	3.6	3.6	2.7	0.2

aN³LO PDF with QED corrections

NNPDF40_aN3L0_QED [arxiv:2406.01779]

MSTH20_aN3L0_QED [arxiv:2312.07665]

The photon **PDF** is computed from **DIS** structure functions [arxiv:1607.04266] [arxiv:1708.01256]:

$$x\gamma(x,Q^2) = \frac{2}{\alpha_{em}} \int_x^1 \frac{dz}{z} \int_{\frac{M_p x^2}{1-z}}^{\frac{Q^2}{1-z}} \frac{d\mu^2}{\mu^2} \alpha_{em}(\mu^2) \left[(zP_{\gamma q} + \frac{2xM_p}{Q^2})F_2 - z^2F_L \right] - \alpha_{em}(Q^2)z^2F_2$$

- Depending on the kinematic region the structure functions F_2, F_L are computed form: pQCD DIS, Inelastic DIS, Elastic DIS.
- DGLAP evolution with mixed $QED \otimes QCD : \mathcal{O}(\alpha_s \alpha_{em}), \mathcal{O}(\alpha_{em}^2)$ corrections.
- Update the other partons with an iterative procedure from a QCD fit and modifying the momentum sum rule:

$$\int_{0}^{1} x dx \ g(x) + \sum_{i} q_{i}^{+}(x) + \frac{\gamma(x)}{\gamma(x)} = 1$$

From NNPDF4.0 NNLO QED [arxiv:2401.08749]