

Progress toward N3LO global fits

Pavel Nadolsky

Southern Methodist University & Michigan State University, USA

With CTEQ-Tung Et Al. (CTEQ-TEA) group

P. Nadolsky, PDF4LHC meeting, NNLO+

Necessary components of an N3LO PDF analysis

Component		Availability
Splitting functions		Partial N3LO
Hard cross sections	DIS, light flavors	Full N3LO
	NC DIS, heavy flavors	Full N3LO (Blümlein et al.), not yet in fitting codes
	Vector boson production	Full N3LO for some processes, fixed N3LO/NLO K-factor tables
	• CC DIS, jet, $t\bar{t}$ production	N2LO
	• $pp \rightarrow W + c, pp \rightarrow Z + b, pp \rightarrow b$	NLO (massive); NNLO (ZM)

Looking forward to including all components **exactly and fully** to reduce the QCD scale uncertainty and guarantee the N3LO accuracy in the near future.

CTEQ-TEA and other groups include some N3LO contributions in their fitting codes: recent progress of MSHT and NNPDF in NNLO+ (aN3LO) fits

Work in progress

QCD cross sections @N3LO

DIS: The CTEQ-TEA code implements complete flavor decompositions of DIS SFs at N3LO using approximate zero-mass Wilson coefficients with a rescaling variable (the **Intermediate-Mass VFN scheme**, cf. the figure)

Boting Wang's and Keping Xie's Theses, SMU, 2018-19

 Working on the implementation of massive N3LO heavy-quark coefficients to obtain N3LO DIS cross sections in the SACOT-MPS General-Mass VFN scheme

Factorization schemes	n Mass dependence in the FC terms	Mass dependence of the FE and subtraction terms	Introduce heavy-quark PDFs at large Q
FFN	Exact	N/A	no
ZM	None	None	yes
IM	Approximate	Approximate	yes
GM	Exact	Approximate	yes

- **DGLAP evolution** is performed at N3LO with APFEL/APFEL++.
- Drell-Yan: Ongoing work to include N3LO DY effects using NNLO ApplFast + N3LO/N2LO K-factor tables

In the meantime: enhanced NNLO (NNLO+) or partial N3LO implementations

Accurate (NNLO) PDFs

CT18 NNLO/CT18Z NNLO MSHT20, NNPDF3.1/4.0 NNLO ABMP, ATLAS, ... NNLO

Potentially more accurate (aN3LO) PDFs

MSHT20 aN3LO

NNPDF4.0 aN3LO

Different from NNLO? More consistent? Unique?

"NNLO+"

Mixed NNLO-N3LO calculations

E.g., a possible CT18 NNLO+ prescription (out of several)

- 1. Use CT18Z NNLO or CT18 NNLO error sets
- 2. Central prediction: take the average of predictions with $\hat{\sigma}_{NNLO}$ and $\hat{\sigma}_{N3LO}$
- 3. Scale uncertainty: compute using $\hat{\sigma}_{N3LO}$

How different from aN3LO predictions?

P. Nadolsky, PDF4LHC meeting, NNLO+

Like an elaborate precision clock, a PDF fit relies on tight coordination of its multiple components to achieve the desired NxLO accuracy

To assess accuracy of a calculation, **Compare cross sections, not just PDFs**

Parsimony/Occam's razor/information criteria:

Unnecessary free parameters constrained by the data tend to reduce, not increase, predictivity of a model

Does a combination of two PDF ensembles cover all possibilities arising in global fits?

P. Nadolsky, PDF4LHC meeting, NNLO+

Probing parton luminosities with toy N3LO cross sections

Computations done by Max Ponce Chavez

Compute NNLO, N3LO cross sections with the n3loxs code (Baglio et al., 2209.06138)

- 1. Test gg luminosities via $gg \rightarrow toy H^0X$; heavy top-quark limit with $N_f = 5$
- 2. Test $q\bar{q}$ luminosities via $q\bar{q} \rightarrow \text{toy } Z'X$ (with M_Z' and M_W' varied, $\sin^2 \theta_w = 0.223$)
- Retain SM couplings; vary masses $M_{H,Z'}$ to test $f_a(x,\mu)$ at $x \sim \frac{M_{H,Z'}}{\sqrt{s}}$
- Estimate the 7-point QCD scale uncertainty around $\mu_{F,0} = \mu_{R,0} = M_H$ or $M_H/2$ for Higgs, $\mu_{F,0} = \mu_{R,0} = M_{Z'}$ for Z'.
- do not include the PDF uncertainty

– Do the included N3LO contributions add up or cancel in the hadronic cross sections?

$pp \rightarrow toy H^0X$, central scales $\mu_{F0} = \mu_{R0} = M_H$

See $\mu_{F0} = \mu_{R0} = M_H/2$ in the supplemental .pdf file (default choice in n3loxs, asymmetric 7pt errors)

All figures are preliminary!

N3LO scale uncertainty is about the same with either NNLO or aN3LO PDFs

At $M_H \approx 10$ GeV, more variability due to the $b\overline{b}$ mass threshold

N3LO scale uncertainty is about the same with either NNLO or aN3LO PDFs

P. Nadolsky, PDF4LHC meeting, NNLO+

Scale uncertainty bands normalized by the average of central CT18, MSHT20, NNPDF4.0 cross sections

The aN3LO corrections reproduce well the shape of the CT18Z gluon PDF obtained at NNLO with a saturation-inspired factorization scale in DIS, also consistently with BFKL-resumed NNPDF and xFitter NNLO PDFs

The CT18 NNLO+ prescription agrees with the combined HXSWG prescription everywhere except at $M_H > 1.5$ TeV (x > 0.1), where tensions between the earlier and newer data sets introduce some differences; added LHC jet/ $t\bar{t}$ data reduce this difference in the CT25 fit (2408.04020)

$pp \rightarrow Z'X$, central scales $\mu_{F0} = \mu_{R0} = M_{Z'}$

[More figures in the supplemental .pdf file]

Notice the scale on the y-axis: uncertainties are smaller than in the $gg \rightarrow HX$ case N3LO scale uncertainty is about the same with either NNLO or aN3LO PDFs *b*-quark threshold effects at 10 GeV

pp \rightarrow Z'X, LHC 13 TeV, $\mu_0 = M_{Z'}$

1.05

1.00

- in agreement with CT18Z NNLO+ at these masses;
- at other $M_{Z'}$, does not capture the full range of NNLO and NNLO+ predictions

NNLO or NNLO+?

Sustained progress by all groups in including N3LO contributions in the PDF fits.

N3LO contributions are still incomplete. Cross section comparisons are not conclusive about superiority of any single NNLO+ technique. The described CT18 NNLO+ and HXSWG aN3LO prescriptions perform similarly for $gg \rightarrow H^0$ total cross sections, while these prescriptions capture a part of the variability in the $q\bar{q} \rightarrow Z'$ cross sections.

None of the NNLO+ techniques is reliable before thorough benchmarking is performed. A suitable time for such benchmarking is after the imminent implementation of N3LO HQ DIS cross sections in all global fits around 2025.

Many other PDF uncertainties are larger than the N3LO-NNLO differences. Among these, the uncertainties due to the choice of the PDF priors and modeling of systematics affect all global fits and do not automatically decrease at NNLO+.