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Introduction



PDF parametrisation(s)

4

1.  Should respect known theoretical constraints such as small- and large-x 
scaling and  sum rules

What are desirable qualities that a good PDF parametrisation should possess?

f(x) ∼ Axα(1 − x)β

2. It should be flexible enough to explore the space of candidate PDFs amongst 
C1[0,1]

3. It should be straightforward to fit the model parameters
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1.  Should respect known theoretical constraints such as small- and large-x 
scaling and  sum rules

What are desirable qualities that a good PDF parametrisation should posses?

f(x) ∼ Axα(1 − x)β

2. It should be flexible enough to explore the space of candidate PDFs amongst 
C1[0,1]

3. It should be straightforward to fit the model parameters
Facilitate realistic PDF 
fit using fully Bayesian 

methodology 



Fitting Framework



Colibri
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Backbone: reportengine and validphys→

Makes use of Jax for high performance 
array computing (GPUs, JIT)
→

Compatible with OpenMPI→

 Allows flexible implementation of 
any PDF parametrisation
→

 Bayesian (Nested Sampling and 
now PYMC) and MC fits possible
→



POD Parametrisation



Linear PDF parametrisation
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fPOD(x, Q2) = ξ0(x, Q2) +
N

∑
i=1

wi (ξi(x, Q2) − ξ0(x, Q2))

 If  satisfy Sum Rules (SRs), then  also does (same holds for Integrability 
and small- large-x scaling)
→ ξi fPOD

  is a linear model, linear in → fPOD wi

 is a collection of basis functions{ξ1, …, ξN}



Proper Orthogonal Decomposition
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 Combine multiple LHAPDF sets and perform a POD→

In the finite-dimensional case POD reduces to the Singular Value Decomposition 
(SVD) +Principal Component Analysis (PCA) of the given set

Xlk ≡ f (k)
α (xi, Q) − f (0)

α (xi, Q) α ∈ {1,…, Nf}

i ∈ {1,…, Nx}l ∈ Nx(α − 1) + i , k ∈ {1,…, Nrep}

POD: explore the principal directions in a space of functions, ordering them from 
most important direction, to least important direction. 



Proper Orthogonal Decomposition
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Construction of the basis

Combine multiple LHAPDF sets and perform a POD

 Impose exact SRs→

V = V15 = V24 = V35, Σ = T24 = T35

 Impose basis consistency, eg, for Intrinsic Charm basis at  GeV → Q = 1.65



Completeness of the basis
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d = | | fT(x) − fPOD(x) | |2

Check performance of the basis on target PDF set: eg NNPDF4.0

Evidence “tells us” what the required flexibility of the parametrisation needs to be 
given the data 



Bayesian Workflow



Bayesian linear regression
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“Linear Data” (DIS)

 forward model is linear in the parameters → w

t(w) = Xw + ϵ

Analytic posterior distribution 

,       p(w |y0) ∼ 𝒩(ŵ, (XTΣ−1X)−1) ŵ = (XTΣ−1X)−1XTΣ−1y0

y ∼ 𝒩(y0, Σ)



Bayesian linear regression
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                                 Z = p(y0 |ℳk) = ∫ dwp(w |y0, ℳk)p(w)

ln Z = −
1
2

χ2 +
N
2

ln(2π) + ln
| (XTΣ−1X)−1 |

∏i (bi − ai)

Given a model  the evidence is defined asℳk

For a Gaussian posterior we can use the Laplace approximation
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                                 Z = p(y0 |ℳk) = ∫ dwp(w |y0, ℳk)p(w)

ln Z = −
1
2

χ2 +
N
2

ln(2π) + ln
| (XTΣ−1X)−1 |

∏i (bi − ai)

Given a model  the evidence is defined asℳk

For a Gaussian posterior we can use the Laplace approximation

Favours models that fit well data



Bayesian linear regression
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                                 Z = p(y0 |ℳk) = ∫ dwp(w |y0, ℳk)p(w)

ln Z = −
1
2

χ2 +
N
2

ln(2π) + ln
| (XTΣ−1X)−1 |

∏i (bi − ai)

Given a model  the evidence is defined asℳk

For a Gaussian posterior we can use the Laplace approximation

Favours models that fit well data penalises models with too 
many parameters



Non-linear regression
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Eg ratio of DIS observables

Fit convergence can be sped up massively by updating the analytical posterior 
when experiments are uncorrelated 

y ∼ 𝒩(t(w), Σ), with Σ = Σ1 ⊕ Σ2, yT
0 = (y1T, y2T)

p(w |y0) =
py1

(w |y1) exp(− 1
2 | |y2 − t2(w) | |2

Σ2
)

∫ dw py1
(w |y1) exp(− 1

2 | |y2 − t2(w) | |2
Σ2

)

MCMC to sample from the parameter space (and compute the evidence integral)



Bayesian model average
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Having fixed a POD basis we can explore multiple models   
with different number of basis elements 

ℳk, k ∈ {1,…, N}

At the end we can average over all of them as

p(fPOD |y0) = ∑
k

p(y0 | fPOD, ℳk)p(ℳk |y0)

And probability of the model given by

p(ℳk |y0) =
p(y0 |ℳk)

∑l p(y0 |ℳl)



Closure Tests



Settings of the fit
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Full NNPDF  DIS dataset,  4.0
Ndat = 3084

Ndat(x > 0.01) = 2463

Ndat(x < 0.01) = 621

Data

Data Region



Model specific closure tests
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Start from known underlying law

fin = ξ0 +
N

∑
i=1

(ξi − ξ0)w̃i

With 15 active parameters

Generate data as 

d ∼ FK(fin) + ϵ, ϵ ∼ 𝒩(0,Σ)



Level 1 closure test
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Scan of models, given a fixed POD basis

15 parameters strike balance between 
goodness of fit and Occam penalty

Models with N < 15 struggle to fit data

Over-parametrised models with N > 15 are 
penalised by the Occam volume factor 

Data ~ Theory + Gaussian Noise



Level 1 closure test
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Evidence “tells us” what the required flexibility of the parametrisation needs to be 
given the data 



Model Selection
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Analytic fit with uniform  prior U[-0.6, 0.6] 

BMA on  10 models within 
. 

Model with highest evidence 
has 19 parameters

Δ ln Z = 4

Results are POD basis-dependent



PDFs and Data-Theory
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Comparison with NNPDF  DIS-only4.0

POD has similar 
uncertainties at 
small-x

POD has smaller 
uncertainties at 
large-x



Conclusions/Outlook



Conclusions / Outlook
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• POD Parametrisation of PDFs: simple but effective parametrisation  

• Bayesian Workflow: Bayesian model selection and average  

• Benchmark of the methodology: closure tests 
 

• Study better the dependence of the results on the POD basis  

• Find alternative, data - independent, methods to construct an efficient POD basis



Backup



Proper Orthogonal Decomposition
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Finite-Dimensional case, Singular Value Decomposition (SVD)

In the finite-dimensional case POD reduces to the SVD+PCA of the given “dataset"

Xlk ≡ f (k)
α (xi, Q) − f (0)

α (xi, Q)
α ∈ {1,…, Nf}

i ∈ {1,…, Nx}l ∈ Nx(α − 1) + i , k ∈ {1,…, Nrep}

Same procedure as the one used to find a Hessian representation of an 
MC set, except that we don’t need the normalisation term Nrep − 1

Construct a “dataset" that is supposed to represent well the space of all possible 
PDFs

[1602.00005]

E.g. Given a MC replica  set such as NNPDFf (k)
α (xi, Q) 4.0



Nested Sampling
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• Monte Carlo algorithm for computing an integral over a model parameter space

• Nested Sampling provides both the posterior samples as well as the marginalised 
likelihood Z

P(Θ |D) =
L(D |Θ)π(Θ)

Z
Z = ∫ L(D |Θ)π(Θ)dΘ

Bayes Rule Marginalised Likelihood

General Idea



Nested Sampling
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1. Initialisation: sample randomly from the prior  live points and compute the Likelihood 
at each point 

2. Shrinkage: remove point with the lowest likelihood  
3. Likelihood Restricted Prior Sampling: sample new point from prior with Likelihood  
4. Iterate

N

L1
> L1

Iteration  reduces integration volume by a factor    , i δVi ≈ (1 −
1
N )

i 1
N

The integral  is simply Z Z ≈ ∑
i

δVi × Li

Termination: when  contributions to  are negligibleδVi × Li Z

Algorithm



Nested Sampling
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Summary

1. It explores the parameter space globally; 

2. it handles multi-modal distributions well;  

3. it initialises and terminates at a well defined point -> no supervision; 

4. it provides both marginal likelihood and posterior samples, hence allowing for Bayesian 
model selection



Choice of Prior
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 is linear in the  parameters  uniform prior in  results in uniform 
prior in  !
fPOD wi → wi

fPOD

fPOD(x, Q2) = ξ0(x, Q2) +
N

∑
i=1

wi (ξi(x, Q2) − ξ0(x, Q2))

However, in certain cases we have a much better choice

Uniform prior



Choice of Prior
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However, in certain cases we have a much better choice

Bayesian Update

d ∼ 𝒩(t(c), Σ), with Σ = Σ1 ⊕ Σ2, d = (d1, d2)

p(c |d1) =
π(c) exp(− 1

2 | |d1 − t1(c) | |2
Σ1

)

∫ dc π(c) exp(− 1
2 | |d1 − t1(c) | |2

Σ1
)

 Fit on  yields a conditional distribution: → d1 p(c |d1)

 Fit model to  using  as prior→ d2 p(c |d1)

p(c |d0) =
pd1

(c |d1) exp(− 1
2 | |d2 − t2(c) | |2

Σ2
)

∫ dc pd1
(c |d1) exp(− 1

2 | |d2 − t2(c) | |2
Σ2

)



Choice of Prior
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Example: consider data from (SLAC, BCDMS) + (HERA NC), (uncorrelated)
Bayesian Update

Fit SLAC + BCDMS first then use it as prior

Prior distribution 
(SLAC+BCDMS fit)

Full fit including 
HERA NC data

Comparison between bayesian 
update and uniform prior



Positivity Constraints
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NNPDF40 Positivity

Fixed penalty term ( ) set to Λ ∼ 3000

Impose cuts on DIS Pos sets:  x > 3e − 05

Impose cuts on MS bar PDFs  Pos sets:  ( ) x > 0.1, x < 0.74 Ndat = 1805

Ndat(x > 0.74) = 55 Ndat(x < 0.1) = 1210

do not to impose any conditions in 
extrapolation region

PDF MSbar POS argument 
breaks down at low x



Colibri
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Backbone: reportengine and validphys→
Makes use of Jax for high performance array computing (GPUs, JIT)→
Compatible with OpenMPI→



Colibri
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Fitting Routines



Colibri
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PDF Models

Very flexible implementation of PDF Model (Abstract class in Colibri)→

Subpackage of Colibri inheriting all features (also form reportengine and 
validphys)
→

A PDF model is a map  → F : params → PDF(Nfl, Nx)



Colibri
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PDF Models

Gaussian Process, work in progress →

 grid pdf model used for the study [2404.10056]→


