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PDF parametrisation(s)

What are desirable qualities that a good PDF parametrisation should possess?

1.  Should respect known theoretical constraints such as small- and large-x
scaling and sum rules

f(x) ~ Ax*(1 — x)’

2. It should be flexible enough to explore the space of candidate PDFs amongst
C'[0,1]

3. It should be straightforward to fit the model parameters
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PDF parametrisation(s)

What are desirable qualities that a good PDF parametrisation should posses?

1.  Should respect known theoretical constraints such as small- and large-x
scaling and sum rules

f(x) ~ Ax*(1 — x)’

2. It should be flexible enough to explore the space of candidate PDFs amongst
C'[0,1]

Facilitate realistic PDF
3. lItshould be straightforward to fit the model parameters |="> fit using fully Bayesian

methodology
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Colibri

Artwork by @gftoons

colibri

A reportengine app to perform PDF fits using arbitrary parametrisations.

—Backbone: reportengine and validphys

—Makes use of Jax for high performance
array computing (GPUs, JIT)

—Compatible with OpenMPI

— Allows flexible implementation of
any PDF parametrisation

— Bayesian (Nested Sampling and
now PYMC) and MC fits possible






Linear PDF parametrisation

N
frop(. Q) = &(x. QD) + ) w; (5(x, Q) — £(x, Q)
=1

1¢1, ..., Ex} is a collection of basis functions

— It &; satisfy Sum Rules (SRs), then fp, also does (same holds for Integrability
and small- large-x scaling)

— fpop 1S a linear model, linear in w,



Proper Orthogonal Decomposition

— Combine multiple LHAPDF sets and perform a POD

XlkEfo((k)(xia Q) _fc((())(xia Q) o {1?9Nf}
l€N(a—D+i ke (l,...,N,,) € L Ny
POD: explore the principal directions in a space of functions, ordering them from

most important direction, to least important direction.

In the finite-dimensional case POD reduces to the Singular Value Decomposition
(SVD) +Principal Component Analysis (PCA) of the given set
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Proper Orthogonal Decomposition

Construction of the basis

Combine multiple LHAPDF sets and perform a POD

PDF Sets Number of Replicas in MC representation
MSHT20nnlo_as118 112

CT18NNLO 200

CT10nnlo 320
MMHT2014nnloé8cl 235

CT14nnlo 320
MSTW2008nnlo90cl 197

NNPDF23 nnlo_as 0118 65

— Impose exact SRs
— Impose basis consistency, eg, for Intrinsic Charm basis at Q = 1.65 GeV

V=Vis=Vy =V, =1y =1x



Completeness of the basis

Check performance of the basis on target PDF set: eg NNPDF4.0
d = |10 = feop() | I

Distance

g(x) pdf .
. . 3 QT
BaSiS dlm 20 '\ reco
>0 Basis dim: 40 2.5} / \
1 Basis dim: 60 > ol
40 Basis dim: 80 - _ /
X 1.5} |
) : / \
§ 30F 10k | /
- - 0.5} / \
20F | \,
0.0F - S~
O u‘"qn rLl[lL'-"wr—-H 1 _r— Lnn L 1 2 1F /\/ ]
0.0 0.1 0.2 0.3 0.4 0.5 . , , . e

10_5. 10_4 10_3 10_2 10_1
X

100

Evidence “tells us” what the required flexibility of the parametrisation needs to be

given the data
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Bayesian linear regression

“Linear Data” (DIS) y ~ N (¥g, 2)

— forward model is linear in the parameters w
t(w) =Xw+¢
Analytic posterior distribution

p(Wlyy) ~ (W, XTZ71x)™h, w=XIz"x)"IxTx 1y,

14



Bayesian linear regression

Given a model ./, the evidence is defined as
Z=p(yolHy) = Jde(W | Yo, A )P(W)

For a Gaussian posterior we can use the Laplace approximation

1 , N [X'Z7X)7
InZ=——y"4+—1n2x) + In
LA T 1. — )
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Bayesian linear regression

Given a model ./, the evidence is defined as
Z=p(yolHy) = Jde(W | Yo, A )P(W)

For a Gaussian posterior we can use the Laplace approximation

N V=0
InZ = @+ > In(27) + In Hi(bi )
g

Favours models that fit well data 16




Bayesian linear regression

Given a model ./, the evidence is defined as
Z=p(yol My = Jde(W | Yo, A 1 )p(W)

For a Gaussian posterior we can use the Laplace approximation

(X7 1x) |
Hi(bi — ;)

— In(27) + In

N
an:@+

/

Favours models that fit well data

N

penalises models with too
many parameters




Non-1linear regression

Eg ratio of DIS observables

MCMC to sample from the parameter space (and compute the evidence integral)

Fit convergence can be sped up massively by updating the analytical posterior
when experiments are uncorrelated

y ~ N(t(w),X), with =%, D2,y = (¥,7,¥,7)

Py (WIYD exp(=3[1¥2— W) [3)
pwlyy)=—"—"——2 """~ 2
Jdw Py, (Wlyy) exp(==1[lyz2 — L(W)] \22)
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Bayesian model average

Having fixed a POD basis we can explore multiple models 4,k € {1,..., N}
with different number of basis elements

At the end we can average over all of them as

PEpon|¥0) = D ol Epops AP ] ¥o)
k

And probability of the model given by

p(yol A,
Zl p(yO ‘ %l)
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Settings of the fit

Data

Full NNPDF4.0 DIS dataset,

N, .= 3084 |
N, (x> 0.01) = 2463
N, (x <0.01) =621 ) 103_?

10! .

NNNNNNN

Kinematic coverage

——r
1074
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Model specific closure tests

Start from known underlying law

N
i, = So+ Z (& = So)W;
=1

With 15 active parameters

Generate data as

d~FK{ )+e e~ N02X)



Level 1 closure test

Scan of models, given a fixed POD basis Data ~ Theory + Gaussian Noise

A LogZ Threshold = 4
15 parameters strike balance between «—— — @\ ......................
goodness of fit and Occam penalty ¢+ e

-1700

—
~
o
o

Models with N <15 struggle to fit data

logZ (Evidence)
@
S

—_—
Qo
o))
o

Over-parametrised models with N > 15 are 1900
Model Bases
penalised by the Occam volume factor 1950 e togz, anaytc + num

8- g 2 Best wmin Models

12 17 22 27 32 37
Number of Weights
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Level 1 closure test

Vv A LogZ Threshold = 4
1.100 — Underlying law
I L1 Closure test Tt —— o,
-1650 NS T,
1.075 — T, .
g T t——e—
|
1.050 1700
__1.025 \ @ -1750
R c
- //{ 2
| O
< 1.000 — — — | — 5 —1800
Q S
®))
0.975 | L2 _1850
0.950 ] -1900
Model Bases
0.925 ~1950 | —e— |ogZ, analytic + num
LRy 2 Best wmin Models
0.6 0.8 1

0.900
0 12 17 22 27 32 37

X Number of Weights

0.0 0.2 0.4

Evidence “tells us” what the required flexibility of the parametrisation needs to be
given the data
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Model Selection

Analytic fit with uniform prior U[-0.6, 0.6]

Results are POD basis-dependent

A LogZ Threshold =4
BMA on 10 models within . > r—

-1880 ././ . \.\./0-0-0\.\/ 0\.\ . —e— |ogZ, analytic + num

A ln Z — 4 ’ .\. / ....... 10 Best wmin Models
’ \.\ \o\
o @ —.\.\
*

Model with highest evidence T N T\
has 19 parameters § o0 | Vo
3 N
E’ 1940
-1960
-1980
1 6 1 16 21 26 31 36 41 46

Number of Weights
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PDFs and Data-Theory

Com with NNPDF4.0 DIS-only

1.04

1.02 -

Ratio to wmin DIS only

0944
10>

1.02 A

Ratio to wmin DIS only

0.96 -

1.00 A

0.98 A

0.96 -

1.00 -

0.98 -
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u at 10 GeV

wmin DIS only (68% c.l.+10)
nnpdf40 DIS only (68% c.1.+10)

1074 1073 102 1071 10°

X

uat 10 GeV

wmin DIS only (68% c.l.+10)
nnpdf40 DIS only (68% c.|.+10)

0.2 0.4 0.6 0.8

POD has similar
uncertainties at

small-x

POD has smaller
uncertainties at

large-x
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Conclusions / Outlook

POD Parametrisation of PDFs: simple but effective parametrisation
Bayesian Workflow: Bayesian model selection and average

Benchmark of the methodology: closure tests

Study better the dependence of the results on the POD basis

Find alternative, data - independent, methods to construct an efficient POD basis
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Proper Orthogonal Decomposition

Finite-Dimensional case, Singular Value Decomposition (SVD)

Construct a “dataset” that is supposed to represent well the space of all possible
PDFs

E.g. Given a MC replica f¥(x;, Q) set such as NNPDF4.0

X, Efo(;k)(xia 0) _fc(xO)(xia 0) ae{l,.. ,N}}

ZENX(G— 1)+1i ,k € {19°"9Nrep}

re{l,...,N_}

In the finite-dimensional case POD reduces to the SVD+PCA of the given “dataset”

Same procedure as the one used to find a Hessian representation of an
MC set, except that we don’t need the normalisation term | /N,,, — 1 1602.00005]



Nested Sampling

General Idea

* Monte Carlo algorithm for computing an integral over a model parameter space

* Nested Sampling provides both the posterior samples as well as the marginalised
likelihood Z

Bayes Rule Marginalised Likelihood

P(®|D) = w 7 = [L(D 10)7(0)d6
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Nested Sampling

Algorithm

1. Initialisation: sample randomly from the prior N live points and compute the Likelihood
at each point

2. Shrinkage: remove point with the lowest likelihood L,

3. Likelihood Restricted Prior Sampling: sample new point from prior with Likelihood > L,
4. lterate

l
1
[teration i reduces integration volume by a factor oV, & (1 — N) I

The integral Zis simply Z ~ Z oV, X L,

Termination: when oV, X L; contributions to Z are negligible

32



Nested Sampling

Summary

1. It explores the parameter space globally;
2. it handles multi-modal distributions well;
3. itinitialises and terminates at a well defined point -> no supervision;

4. it provides both marginal likelihood and posterior samples, hence allowing for Bayesian
model selection

33



Choice of Prior

Uniform prior
N
frop(x, QD) = &(x. QD) + ) w; (5(x, Q) — £(x, Q)
=1

fpop 18 linear in the w; parameters — uniform prior in w; results in uniform

prior in fpop !

However, in certain cases we have a much better choice

34



Choice of Prior
Bayesian Update

However, in certain cases we have a much better choice

d~ N(tc),S), with T=%, @3, d = (d,, d)

— Fit on d; yields a conditional distribution:
w(c) exp(—3 | ld; = 1,(0)]13)

p(cld)) = " >
. . . Jdc a(c) exp(=511d, — ()| ]5)
— Fit model to d, using p(c | d;) as prior

palcld) exp(=3|1dy — 1,013

p(cldy) = 1 -
[de pateld) exp(=311d—n(c)]]3,)
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Choice of Prior

Bayesian Update
Example: consider data from (SLAC, BCDMS) + (HERA NC), (uncorrelated)

Fit SLAC + BCDMS first then use it as prior

+—
» ?‘!; g at 100 GeV
T g at 100 GeV D 1.020
2 4 06 SLAC+BCDMS+HERA NC, Bayesian Update (68% c.l.+10) =
& SLAC+BCDMS Analytic Fit (Prior) (68% c.l.+10) @ 1.015
n >
v ©
§ 1.04 © 1.010
g g
Z 102 é 1.005
& 0
L - 1.000
¥ 1.00 +
£ s 0.995
(]
()]
O 0.98 @ 0.990
v &
Q
< 0.96 < 0.985
N ' N SLAC+BCDMS+HERA NC, Bayesian Update (68% c.l.+10)
8 8 0.980 - SLAC+BCDMS+HERA NC, Full fit (68% c.l.+10)
- e . ———r o B S
S 1077 10~ 1073 1072 - 107° 10~ 1073 1072 1071 10°
o X o

X

Prior distribution  Full fit including Comparison between bayesian

(SLAC+BCDMS fit) HERA NC data . update and uniform prior



Positivity Constraints

x ULES.
process type: POS_XPDF
rule: "x > 0.1 and x < 0.74"

NNPDF 40 Positivity

_type: POS_DIS # affects structure functions

rule: "x > 3e-05"

Fixed penalty term (A) set to ~ 3000

Impose cuts on DIS Pos sets: x > 3e — 05

Impose cuts on MS bar PDFs Pos sets: x > 0.1, x < 0.74 (N, = 1805)

N, (x> 0.74) = 55 N, (x <0.1) = 1210

do not to impose any conditions in PDF MSbar POS argument
extrapolation region breaks down at low x
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Colibri

L] README Packages

No packages published
Publish your first package

colibri

Contributors 5
() Tests [passing| code style black codecov | 96%

ARBG ™

A reportengine app to perform PDF fits using arbitrary parametrisations.

colibri Installation Languages

e Option 1: From your base conda environment run: Python 100.0%

—Backbone: reportengine and validphys

—Makes use of Jax for high performance array computing (GPUs, JIT)

—Compatible with OpenMPI
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Colibri

F1tting Routines

- Only linear, very fast

Analytic
- Computes bayesian metrics
- flexible prior choices
Nested Sampling - bayesian model comparison

- use posterior as priors

Monte Carlo
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Colibri

PDF Models

— Subpackage of Colibri inheriting all features (also form reportengine and
validphys)

— Very flexible implementation of PDF Model (Abstract class in Colibri)

—A PDF model is a map F': params — PDF(Ng, N,)
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Colibri

PDF Models

— grid pdf model used for the study [2404.10056]

z at 1.§5 va B g at 1.65 GeV )

——————— 12 —— ————
m © 1.1+
Y 1.005} o
! 2
S 5 1.0
2 0.995 S
% - % 0.9
< 0,990} .
T U (s U s S T S
X X
[ J [ J
—Gaussian Process, work in progress
T3 a\t 1.65 GeV T3 at 1.65 GeV
0.75 A = | |:v:m
0.50 A
0.25 A
% 0.00
—0.25 -
—0.50 -
—0.75 A
0 10 -




