Linear models for Bayesian PDF fits Mark N. Costantini

In collaboration with L. Mantani, J. Moore and M. Ubiali

PDF4LHC, CERN December 2024

Artwork by: <u>@qftoons</u>

Funded by the European Union

European Research Council Established by the European Commission

Outline

- Introduction / Motivation
- POD Parametrisation of PDFs
- Bayesian Workflow
- Benchmark of the methodology: closure tests
- Conclusions / Outlook

Introduction

PDF parametrisation(s)

What are desirable qualities that a good PDF parametrisation should possess?

Should respect known theoretical constraints such as small- and large-x 1. scaling and sum rules

 $f(x) \sim A x^{\alpha}($

- It should be flexible enough to explore the space of candidate PDFs amongst 2. $C^{1}[0,1]$
- 3. It should be straightforward to fit the model parameters

$$(1-x)^{\beta}$$

PDF parametrisation(s)

What are desirable qualities that a good PDF parametrisation should posses?

Should respect known theoretical constraints such as small- and large-x 1. scaling and sum rules

 $f(x) \sim A x^{\alpha}$

It should be flexible enough to explore the space of candidate PDFs amongst 2. $C^{1}[0,1]$

It should be straightforward to fit the model parameters 3.

$$(1-x)^{\beta}$$

Facilitate realistic PDF fit using fully Bayesian methodology

Fitting Framework

Colibri

Artwork by @qftoons

colibri

Tests passing code style black codecov 96%

A reportengine app to perform PDF fits using arbitrary parametrisations.

 \rightarrow Backbone: reportengine and validphys

 \rightarrow Makes use of Jax for high performance array computing (GPUs, JIT)

 \rightarrow Compatible with OpenMPI

 \rightarrow Allows flexible implementation of any PDF parametrisation

→ Bayesian (Nested Sampling and now PYMC) and MC fits possible

POD Parametrisation

Linear PDF parametrisation

 $\{\xi_1, \ldots, \xi_N\}$ is a collection of basis functions

 \rightarrow If ξ_i satisfy Sum Rules (SRs), then f_{POD} also does (same holds for Integrability and small-large-x scaling)

 $\rightarrow f_{POD}$ is a linear model, linear in w_i

 $f_{POD}(x,Q^2) = \xi_0(x,Q^2) + \sum_{i=1}^{N} w_i \left(\xi_i(x,Q^2) - \xi_0(x,Q^2)\right)$ i=1

Proper Orthogonal Decomposition

\rightarrow Combine multiple LHAPDF sets and perform a POD

$$\begin{aligned} X_{lk} &\equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q) & \alpha \in \{1, \dots, N_f\} \\ i \ , k \in \{1, \dots, N_{rep}\} & i \in \{1, \dots, N_x\} \end{aligned}$$

$$X_{lk} \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q) \qquad \alpha \in \{1, \dots, N_f\}$$
$$l \in N_x(\alpha - 1) + i \ , k \in \{1, \dots, N_{rep}\} \qquad i \in \{1, \dots, N_x\}$$

most important direction, to least important direction.

(SVD) + Principal Component Analysis (PCA) of the given set

- POD: explore the principal directions in a space of functions, ordering them from
- In the finite-dimensional case POD reduces to the Singular Value Decomposition

Proper Orthogonal Decomposition Construction of the basis

Combine multiple LHAPDF sets and perform a POD

PDF Sets

MSHT2Onnlo_as118 CT18NNLO CT10nnlo MMHT2014nnlo68cl CT14nnlo MSTW2008nnlo90cl NNPDF23_nnlo_as_0118

→ Impose exact SRs → Impose basis consistency, eg, for In $V = V_{15} = V_{24} =$

Number of Replicas in MC representation	
112	
200	
320	
235	
320	
197	
65	

\rightarrow Impose basis consistency, eg, for Intrinsic Charm basis at Q = 1.65 GeV

$$V_{35}, \quad \Sigma = T_{24} = T_{35}$$

Completeness of the basis

Check performance of the basis on target PDF set: eg NNPDF4.0

given the data

Evidence "tells us" what the required flexibility of the parametrisation needs to be

Bayesian Workflow

"Linear Data" (DIS)

 \rightarrow forward model is linear in the parameters **w**

Analytic posterior distribution

 $p(\mathbf{w} | \mathbf{y}_0) \sim \mathcal{N}(\hat{\mathbf{w}}, (X^T \Sigma^{-1} X)^{-1}), \quad \hat{\mathbf{w}} = (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} \mathbf{y}_0$

- $\mathbf{y} \sim \mathcal{N}(\mathbf{y}_0, \Sigma)$

 - $\mathbf{t}(\mathbf{w}) = X\mathbf{w} + \epsilon$

Given a model \mathcal{M}_k the evidence is defined as

$$Z = p(\mathbf{y}_0 | \mathcal{M}_k) =$$

For a Gaussian posterior we can use the Laplace approximation

$$\ln Z = -\frac{1}{2}\chi^2 + \frac{N}{2}\ln(2\pi) + \ln\left(\frac{\sqrt{|(X^T \Sigma^{-1} X)^{-1}|}}{\prod_i (b_i - a_i)}\right)$$

$$\int d\mathbf{w} p(\mathbf{w} | \mathbf{y}_0, \mathcal{M}_k) p(\mathbf{w})$$

Given a model \mathcal{M}_k the evidence is defined as

$$Z = p(\mathbf{y}_0 | \mathcal{M}_k) =$$

For a Gaussian posterior we can use the Laplace approximation

$$\ln Z = -\frac{1}{2}\chi^2 + \frac{N}{2}\ln(2\pi) + \ln\left(\frac{\sqrt{|(X^T\Sigma^{-1}X)^{-1}|}}{\prod_i(b_i - a_i)}\right)$$
Favours models that fit well data

$$\int d\mathbf{w} p(\mathbf{w} | \mathbf{y}_0, \mathcal{M}_k) p(\mathbf{w})$$

Given a model \mathcal{M}_k the evidence is defined as

$$Z = p(\mathbf{y}_0 | \mathcal{M}_k) =$$

For a Gaussian posterior we can use the Laplace approximation

$$\ln Z = -\frac{1}{2}\chi^{2} + \frac{N}{2}\ln(2\pi) + \ln\left(\frac{\sqrt{|(X^{T}\Sigma^{-1}X)^{-1}|}}{\prod_{i}(b_{i} - a_{i})}\right)$$

penalises models we many parameters

Favours models that fit wel

 $d\mathbf{w}p(\mathbf{w} | \mathbf{y}_0, \mathcal{M}_k)p(\mathbf{w})$

Non-linear regression

Eg ratio of DIS observables

when experiments are uncorrelated

$$\mathbf{y} \sim \mathcal{N}(\mathbf{t}(\mathbf{w}), \Sigma), \text{ with } \Sigma = \Sigma_1 \bigoplus \Sigma_2, \mathbf{y}_0^T = (\mathbf{y}_1^T, \mathbf{y}_2^T)$$
$$p(\mathbf{w} | \mathbf{y}_0) = \frac{p_{\mathbf{y}_1}(\mathbf{w} | \mathbf{y}_1) \exp(-\frac{1}{2} | | \mathbf{y}_2 - t_2(\mathbf{w}) | |_{\Sigma_2}^2)}{\int d\mathbf{w} p_{\mathbf{y}_1}(\mathbf{w} | \mathbf{y}_1) \exp(-\frac{1}{2} | | \mathbf{y}_2 - t_2(\mathbf{w}) | |_{\Sigma_2}^2)}$$

MCMC to sample from the parameter space (and compute the evidence integral) Fit convergence can be sped up massively by updating the analytical posterior

Bayesian model average

with different number of basis elements

At the end we can average over all of them as

$$p(\mathbf{f}_{POD} | \mathbf{y}_0) = \sum_k p_k$$

And probability of the model given by

$$p(\mathcal{M}_k | \mathbf{y}_0) =$$

- Having fixed a POD basis we can explore multiple models $\mathcal{M}_k, k \in \{1, ..., N\}$

 $p(\mathbf{y}_0 | \mathbf{f}_{POD}, \mathcal{M}_k) p(\mathcal{M}_k | \mathbf{y}_0)$

 $\frac{p(\mathbf{y}_0 \mid \mathcal{M}_k)}{\sum (1 \leq k \leq k)}$ $\sum_{l} p(\mathbf{y}_0 \mid \mathcal{M}_l)$

Closure Tests

Settings of the fit Data Full NNPDF4.0 DIS dataset, $N_{dat} = 3084$ $N_{dat}(x > 0.01) = 2463$ 10⁴ $N_{dat}(x < 0.01) = 621$ Q² (GeV²)

Kinematic coverage

Data Region

10²

10¹

Model specific closure tests

Start from known underlying law

$$\mathbf{f}_{in} = \xi_0 + \sum_{i=1}^N (\xi_i)$$

With 15 active parameters

Generate data as

$\mathbf{d} \sim FK(\mathbf{f}_{in}) + \epsilon, \, \epsilon \sim \mathcal{N}(0, \Sigma)$

 $(\xi_i - \xi_0) \tilde{w}_i$

Level 1 closure test

Scan of models, given a fixed POD basis

15 parameters strike balance between goodness of fit and Occam penalty

Models with N < 15 struggle to fit data

Over-parametrised models with N > 15 are penalised by the Occam volume factor

Data ~ Theory + Gaussian Noise

Level 1 closure test

Evidence "tells us" what the required flexibility of the parametrisation needs to be given the data

 \triangle LogZ Threshold = 4

Model Selection

Analytic fit with uniform prior U[-0.6, 0.6]

Results are POD basis-dependent

BMA on 10 models within

 $\Delta \ln Z = 4.$

Model with highest evidence has 19 parameters

25

ogZ (Evidence)

PDFs and Data-Theory

Comparison with NNPDF4.0 DIS-only

0.96

0.2

0.4

х

0.6

0.8

POD has similar uncertainties at small-x

POD has smaller uncertainties at large-x

Conclusions/Outlook

Conclusions / Outlook

- POD Parametrisation of PDFs: simple but effective parametrisation
- Bayesian Workflow: Bayesian model selection and average
- Benchmark of the methodology: closure tests

- Study better the dependence of the results on the POD basis
- Find alternative, data independent, methods to construct an efficient POD basis

•

• • • • • • •

Proper Orthogonal Decomposition Finite-Dimensional case, Singular Value Decomposition (SVD) Construct a "dataset" that is supposed to represent well the space of all possible **PDFs**

- E.g. Given a MC replica $f_{\alpha}^{(k)}(x_i, Q)$ set such as NNPDF4.0
 - $X_{lk} \equiv f_{\alpha}^{(k)}(x_i, Q) f_{\alpha}^{(0)}(x_i, Q)$
- $l \in N_r(\alpha 1) + i , k \in \{1, ..., N_{ren}\}$

In the finite-dimensional case POD reduces to the SVD+PCA of the given "dataset"

Same procedure as the one used to find a Hessian representation of an MC set, except that we don't need the normalisation term $\sqrt{N_{rep}} - 1$ [1602.00005]

 $\alpha \in \{1, \dots, N_f\}$ $i \in \{1, ..., N_{x}\}$

Nested Sampling General Idea

- Monte Carlo algorithm for computing an integral over a model parameter space
- Nested Sampling provides both the posterior samples as well as the marginalised likelihood Z

Bayes Rule

 $P(\Theta \mid D) = \frac{L(D \mid \Theta)\pi(\Theta)}{7}$

Marginalised Likelihood

$$Z = \int L(D \mid \Theta) \pi(\Theta) d\Theta$$

Nested Sampling Algorithm

- Initialisation: sample randomly from the prior N live points and compute the Likelihood at each point
- Shrinkage: remove point with the lowest likelihood L_1 2. Likelihood Restricted Prior Sampling: sample new point from prior with Likelihood > L_1
- Iterate

Iteration *i* reduces integration volume by a fa

The integral Z is simply
$$Z \approx \sum_{i} \delta V_i \times L_i$$

Termination: when $\delta V_i \times L_i$ contributions to Z are negligible

actor
$$\delta V_i \approx \left(1 - \frac{1}{N}\right)^i \frac{1}{N}$$
,

Nested Sampling Summary

- It explores the parameter space globally; 1.
- it handles multi-modal distributions well; 2.
- it initialises and terminates at a well defined point -> no supervision; 3.
- 4. model selection

it provides both marginal likelihood and posterior samples, hence allowing for Bayesian

Choice of Prior Uniform prior

$f_{POD}(x,Q^2) = \xi_0(x,Q^2) + \sum_{i=1}^{N} w_i \left(\xi_i(x,Q^2) - \xi_0(x,Q^2)\right)$ i=1

 f_{POD} is linear in the w_i parameters \rightarrow uniform prior in w_i results in uniform prior in f_{POD} !

However, in certain cases we have a much better choice

Choice of Prior Bayesian Update

However, in certain cases we have a much better choice

 $d \sim \mathcal{N}(t(c), \Sigma)$, with $\Sigma = \Sigma_1 \oplus \Sigma_2$, $d = (d_1, d_2)$

\rightarrow Fit on d_1 yields a conditional distribution: $p(c \mid d_1)$

 \rightarrow Fit model to d_2 using $p(c \mid d_1)$ as prior

$$p(c \mid d_0) = \frac{p_{d_1}(c \mid d_1) \exp(-\frac{1}{2} \mid \mid d_2 - t_2(c) \mid \mid_{\Sigma_2}^2)}{\int dc \, p_{d_1}(c \mid d_1) \exp(-\frac{1}{2} \mid \mid d_2 - t_2(c) \mid \mid_{\Sigma_2}^2)}$$

$$p(c \mid d_1) = \frac{\pi(c) \exp(-\frac{1}{2} \mid \mid d_1 - t_1(c))}{\int dc \ \pi(c) \ \exp(-\frac{1}{2} \mid \mid d_1 - t_1(c))}$$

Choice of Prior Bayesian Update Example: consider data from (SLAC, BCDMS) + (HERA NC), (uncorrelated) Fit SLAC + BCDMS first then use it as prior

Prior distribution (SLAC+BCDMS fit)

Full fit including HERA NC data

Comparison between bayesian update and uniform prior

Positivity Constraints

NNPDF40 Positivity

Fixed penalty term (Λ) set to ~ 3000 Impose cuts on DIS Pos sets: x > 3e - 05Impose cuts on MS bar PDFs Pos sets: x > 0.1, x < 0.74 ($N_{dat} = 1805$)

$N_{dat}(x > 0.74) = 55$

do not to impose any conditions in extrapolation region

$N_{dat}(x < 0.1) = 1210$

PDF MSbar POS argument breaks down at low x

Colibri

colibri
Tests passing code style black Codecov 96%
A reportengine app to perform PDF fits using arbitrary parametrisations.
colibri Installation
 Option 1: From your base conda environment run:
\rightarrow Backbone: reportengine and validp

 \rightarrow Makes use of Jax for high performance array computing (GPUs, JIT)

 \rightarrow Compatible with OpenMPI

ohys

Colibri Fitting Routines

Analytic

- Only linear, very fast
- Computes bayesian metrics
- flexible prior choices
- use posterior as priors

Nested Sampling

Monte Carlo

Colibri PDF Models

validphys)

 \rightarrow Very flexible implementation of PDF Model (Abstract class in Colibri)

 \rightarrow A PDF model is a map F: params $\rightarrow PDF(N_{fl}, N_x)$

\rightarrow Subpackage of Colibri inheriting all features (also form reportengine and

Colibri PDF Models

\rightarrow grid pdf model used for the study [2404.10056]

41