Linear models for Bayesian PDF fits **Mark N. Costantini**

PDF4LHC, CERN December 2024

Funded by the European Union

European Research Council Established by the European Commission

In collaboration with L. Mantani, J. Moore and M. Ubiali

Artwork by: [@qftoons](https://www.instagram.com/qftoons/)

Outline

- Introduction / Motivation
- POD Parametrisation of PDFs
- Bayesian Workflow
- Benchmark of the methodology: closure tests
- Conclusions / Outlook

Introduction \bullet

PDF parametrisation(s)

1. Should respect known theoretical constraints such as small- and large-x scaling and sum rules

 $f(x) \sim Ax^{\alpha}$

What are desirable qualities that a good PDF parametrisation should possess?

$$
(1-x)^{\beta}
$$

- 2. It should be flexible enough to explore the space of candidate PDFs amongst $C^1[0,1]$
- 3. It should be straightforward to fit the model parameters

PDF parametrisation(s)

1. Should respect known theoretical constraints such as small- and large-x scaling and sum rules

 $f(x) \sim Ax^{\alpha}$

2. It should be flexible enough to explore the space of candidate PDFs amongst $C^1[0,1]$

What are desirable qualities that a good PDF parametrisation should posses?

$$
(1-x)^{\beta}
$$

3. It should be straightforward to fit the model parameters

Facilitate realistic PDF fit using fully Bayesian methodology

Fitting Framework.

Colibri

Artwork by @qftoons

colibri

C Tests passing code style black codecov 96%

A reportengine app to perform PDF fits using arbitrary parametrisations.

 \rightarrow Backbone: reportengine and validphys

 \rightarrow Makes use of Jax for high performance array computing (GPUs, JIT)

 \rightarrow Compatible with OpenMPI

 \rightarrow Allows flexible implementation of any PDF parametrisation

→ Bayesian (Nested Sampling and now PYMC) and MC fits possible

POD Parametrisation

Linear PDF parametrisation

f $\mathcal{E}_{POD}^{2}(x, Q^{2}) = \mathcal{E}_{0}(x, Q^{2})$ $) +$

N ∑ *i*=1 W_i (\mathcal{E}_i $(x, Q^2) - \xi_0(x, Q^2)$))

 \rightarrow If ξ ^{*i*} satisfy Sum Rules (SRs), then f_{POD} also does (same holds for Integrability and small- large-x scaling)

 \rightarrow *f_{POD}* is a linear model, linear in W_i

{*ξ* is a collection of basis functions 1,…, *ξN*}

Proper Orthogonal Decomposition

\rightarrow Combine multiple LHAPDF sets and perform a POD

(SVD) +Principal Component Analysis (PCA) of the given set

- POD: explore the principal directions in a space of functions, ordering them from
- In the finite-dimensional case POD reduces to the Singular Value Decomposition

$$
X_{lk} \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q) \qquad \alpha \in \{1, ..., N_f\}
$$

 $i, k \in \{1, ..., N_{rep}\}$
 $i \in \{1, ..., N_x\}$

$$
X_{lk} \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q) \qquad \alpha \in \{1, ..., N_f\}
$$

$$
l \in N_x(\alpha - 1) + i, k \in \{1, ..., N_{rep}\}
$$

$$
i \in \{1, ..., N_x\}
$$

most important direction, to least important direction.

Proper Orthogonal Decomposition Construction of the basis

Combine multiple LHAPDF sets and perform a POD

PDF Sets

MSHT20nnlo_as118 CT18NNLO CT10nnlo MMHT2014nnlo68cl CT14nnlo MSTW2008nnlo90cl NNPDF23_nnlo_as_0118

 \rightarrow Impose exact SRs $V = V_{15} = V_{24} =$

\rightarrow Impose basis consistency, eg, for Intrinsic Charm basis at $Q = 1.65$ GeV

$$
V_{35}, \quad \Sigma = T_{24} = T_{35}
$$

Completeness of the basis

Check performance of the basis on target PDF set: eg NNPDF4.0

Evidence "tells us" what the required flexibility of the parametrisation needs to be

given the data

Bayesian Workflow

"Linear Data" (DIS)

 \rightarrow forward model is linear in the parameters **w**

 $p(\mathbf{w}|\mathbf{y}_0) \sim \mathcal{N}(\hat{\mathbf{w}}, (X^I\Sigma^{-1}X)^{-1}),$ **๎** $, (X^T \Sigma^{-1} X)$ −1 $\hat{\mathbf{w}} = (X^T \Sigma^{-1} X)$ ̂ −1 *XT*Σ−¹ **y**0

- $\mathbf{y} \sim \mathcal{N}(\mathbf{y}_0, \Sigma)$
	-
	- $\mathbf{t}(\mathbf{w}) = X\mathbf{w} + \epsilon$

Analytic posterior distribution

Given a model \mathcal{M}_k the evidence is defined as

$$
Z = p(\mathbf{y}_0 | \mathcal{M}_k) =
$$

$$
Z = p(\mathbf{y}_0 | \mathcal{M}_k) = \int d\mathbf{w} p(\mathbf{w} | \mathbf{y}_0, \mathcal{M}_k) p(\mathbf{w})
$$

$$
\ln Z = -\frac{1}{2}\chi^2 + \frac{N}{2}\ln(2\pi) + \ln\left(\frac{\sqrt{(X^T\Sigma^{-1}X)^{-1}}}{\prod_i(b_i - a_i)}\right)
$$

For a Gaussian posterior we can use the Laplace approximation

Given a model \mathcal{M}_k the evidence is defined as

$$
Z = p(\mathbf{y}_0 | \mathcal{M}_k) =
$$

$$
Z = p(\mathbf{y}_0 | \mathcal{M}_k) = \int d\mathbf{w} p(\mathbf{w} | \mathbf{y}_0, \mathcal{M}_k) p(\mathbf{w})
$$

$$
\ln Z = \left(\frac{1}{2}\chi^2\right) + \frac{N}{2}\ln(2\pi) + \ln\left(\frac{\sqrt{\left|\left(X^T\Sigma^{-1}X\right)^{-1}\right|}}{\prod_i (b_i - a_i)}\right)
$$

Favours models that fit well data

For a Gaussian posterior we can use the Laplace approximation

Given a model \mathcal{M}_k the evidence is defined as

$$
Z = p(\mathbf{y}_0 | \mathcal{M}_k) =
$$

$$
\ln Z = \underbrace{\left\{ \frac{1}{2} \chi^2 \right\}}_{\text{Favours models that fit well data}} + \underbrace{\left\{ \frac{\sqrt{|\left(X^T \Sigma^{-1} X\right)^{-1}|}}{\prod_i (b_i - a_i)} \right\}}_{\text{penalises models with too many parameters}}
$$

 $\int d\mathbf{w} p(\mathbf{w} | \mathbf{y}_0, M_k) p(\mathbf{w})$

For a Gaussian posterior we can use the Laplace approximation

Non-linear regression

Eg ratio of DIS observables

when experiments are uncorrelated

Fit convergence can be sped up massively by updating the analytical posterior MCMC to sample from the parameter space (and compute the evidence integral)

$$
\mathbf{y} \sim \mathcal{N}(\mathbf{t}(\mathbf{w}), \Sigma), \text{ with } \Sigma = \Sigma_1 \oplus \Sigma_2, \mathbf{y}_0^T = (\mathbf{y}_1^T, \mathbf{y}_2^T)
$$

$$
p(\mathbf{w} | \mathbf{y}_0) = \frac{p_{\mathbf{y}_1}(\mathbf{w} | \mathbf{y}_1) \exp(-\frac{1}{2} || \mathbf{y}_2 - t_2(\mathbf{w}) ||_{\Sigma_2}^2)}{\int d\mathbf{w} \, p_{\mathbf{y}_1}(\mathbf{w} | \mathbf{y}_1) \exp(-\frac{1}{2} || \mathbf{y}_2 - t_2(\mathbf{w}) ||_{\Sigma_2}^2)}
$$

Bayesian model average

with different number of basis elements

At the end we can average over all of them as

$$
p(\mathbf{f}_{POD} | \mathbf{y}_0) = \sum_{k} p
$$

And probability of the model given by

$$
p(\mathcal{M}_k | \mathbf{y}_0) =
$$

- Having fixed a POD basis we can explore multiple models $\mathcal{M}_k, k \in \{1,...,N\}$
	-

 $p(\mathbf{y}_0 | \mathbf{f}_{POD}, \mathcal{M}_k) p(\mathcal{M}_k | \mathbf{y}_0)$

 $\frac{p(\mathbf{y}_0 | \mathcal{M}_k)}{\sum_{k=1}^{k} (1 - \mathbf{M}_k)^k}$ $\sum_{l} p(\mathbf{y}_0 | \mathcal{M}_l)$

Closure Tests $\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet\hspace{0.4mm}\bullet$

Settings of the fit Data Full NNPDF4.0 DIS dataset, $N_{dat} = 3084$ $N_{dat}(x > 0.01) = 2463$ $10⁴$ $N_{dat}(x < 0.01) = 621$ $\begin{array}{c}\n\widehat{\sim} \\
\widehat{O} \\
\stackrel{\sim}{O}\n\end{array}$

Kinematic coverage

 $10²$

 10^1

Data Region

Model specific closure tests

Start from known underlying law

 $(\xi_i - \xi_0)\tilde{w}$ *i*

$$
\mathbf{f}_{in} = \xi_0 + \sum_{i=1}^{N} \left(\mathbf{q} \mathbf{q}_i \right)
$$

With 15 active parameters

Generate data as

$d \sim FK(f_{in}) + \epsilon, \epsilon \sim \mathcal{N}(0,\Sigma)$

Level 1 closure test

Scan of models, given a fixed POD basis

15 parameters strike balance between goodness of fit and Occam penalty

Models with $N < 15$ struggle to fit data

Over-parametrised models with $N > 15$ are penalised by the Occam volume factor

Data ~ Theory + Gaussian Noise

Level 1 closure test

Evidence "tells us" what the required flexibility of the parametrisation needs to be given the data

 \triangle LogZ Threshold = 4

Model Selection

25

ogZ (Evidence)

Analytic fit with uniform prior U[-0.6, 0.6]

BMA on 10 models within

 $\Delta \ln Z = 4.$

Model with highest evidence has 19 parameters

Results are POD basis-dependent

PDFs and Data-Theory

Comparison with NNPDF4.0 DIS-only

0.96

 0.2

 0.4

X

 0.6

 0.8

POD has similar uncertainties at small-x

POD has smaller uncertainties at large-x

Conclusions/Outlook

Conclusions / Outlook

- POD Parametrisation of PDFs: simple but effective parametrisation
- Bayesian Workflow: Bayesian model selection and average
- Benchmark of the methodology: closure tests

- Study better the dependence of the results on the POD basis
- Find alternative, data independent, methods to construct an efficient POD basis

 \bullet \bullet

.

In the finite-dimensional case POD reduces to the SVD+PCA of the given "dataset"

MC set, except that we don't need the normalisation term $\sqrt{N_{rep}-1}$ Same procedure as the one used to find a Hessian representation of an [1602.00005]

 $\alpha^{(k)}(x_i, Q)$ set such as NNPDF4.0

Proper Orthogonal Decomposition Finite-Dimensional case, Singular Value Decomposition (SVD) Construct a "dataset" that is supposed to represent well the space of all possible PDFs

E.g. Given a MC replica $f_\alpha^{(k)}(x_i, Q)$ set such as NNPDF

 $X_{lk} \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)$ *α* ∈ {1,…,*Nf* } $i \in \{1,...,N_x\}$
 $i \in \{1,...,N_x\}$

- Monte Carlo algorithm for computing an integral over a model parameter space
- Nested Sampling provides both the posterior samples as well as the marginalised likelihood Z

 $P(\Theta | D) =$ *L*(*D*|Θ)*π*(Θ) *Z*

Bayes Rule Marginalised Likelihood

Nested Sampling General Idea

$$
Z = \int L(D | \Theta) \pi(\Theta) d\Theta
$$

Nested Sampling Algorithm

- 1. Initialisation: sample randomly from the prior N live points and compute the Likelihood at each point
- 2. Shrinkage: remove point with the lowest likelihood L_1 3. Likelihood Restricted Prior Sampling: sample new point from prior with Likelihood $>L_1$
-
- **Iterate**

Iteration *i* reduces integration volume by a factor *i*

$$
\text{actor} \quad \delta V_i \approx \left(1 - \frac{1}{N}\right)^i \frac{1}{N},
$$

The integral Z is simply
$$
Z \approx \sum_{i} \delta V_{i} \times L_{i}
$$

Termination: when $\delta V_i \times L_i$ contributions to Z are negligible

Nested Sampling Summary

- 1. It explores the parameter space globally;
- 2. it handles multi-modal distributions well;
- 3. it initialises and terminates at a well defined point -> no supervision;
- model selection

4. it provides both marginal likelihood and posterior samples, hence allowing for Bayesian

 f_{POD} is linear in the w_i parameters \rightarrow uniform prior in w_i results in uniform prior in f_{POD} ! *POD*

Choice of Prior Uniform prior

f $\mathcal{E}_{POD}(x, Q^2) = \mathcal{E}_0(x, Q^2)$ $) +$ *N* ∑ *i*=1 W_i (\mathcal{E}_i $(x, Q^2) - \xi_0(x, Q^2)$))

However, in certain cases we have a much better choice

Choice of Prior Bayesian Update

However, in certain cases we have a much better choice

 $d \sim \mathcal{N}(t(c), \Sigma)$, with $\Sigma = \Sigma_1 \oplus \Sigma_2$, $d = (d_1, d_2)$

\rightarrow Fit on d_1 yields a conditional distribution: $p(c|d_1)$

 \rightarrow Fit model to d_2 using $p(c | d_1)$ as prior

$$
p(c|d_1) = \frac{\pi(c) \exp(-\frac{1}{2}||d_1 - t_1(c)||_{\Sigma_1}^2)}{\int dc \ \pi(c) \ \exp(-\frac{1}{2}||d_1 - t_1(c)||)}
$$

$$
p(c|d_0) = \frac{p_{d_1}(c|d_1) \exp(-\frac{1}{2}||d_2 - t_2(c)||_{\Sigma_2}^2)}{\int dc \ p_{d_1}(c|d_1) \exp(-\frac{1}{2}||d_2 - t_2(c)||_{\Sigma_2}^2)}
$$

Choice of Prior Example: consider data from (SLAC, BCDMS) + (HERA NC), (uncorrelated) Bayesian Update Fit SLAC + BCDMS first then use it as prior

Full fit including HERA NC data

Prior distribution (SLAC+BCDMS fit)

Comparison between bayesian update and uniform prior

Positivity Constraints

NNPDF40 Positivity

Fixed penalty term (Λ) set to \sim 3000 Impose cuts on DIS Pos sets: $x > 3e - 05$ Impose cuts on MS bar PDFs Pos sets: $x > 0.1$, $x < 0.74$ ($N_{\text{dat}} = 1805$)

Ndat $(x > 0.74) = 55$ *N*_{dat}

do not to impose any conditions in extrapolation region

$N_{dat}(x < 0.1) = 1210$

PDF MSbar POS argument breaks down at low x

Colibri

 \rightarrow Makes use of Jax for high performance array computing (GPUs, JIT)

 \rightarrow Compatible with OpenMPI

Colibri Fitting Routines

Analytic

Nested Sampling

- Only linear, very fast
- Computes bayesian metrics
- flexible prior choices
-
- use posterior as priors

Monte Carlo

Colibri PDF Models

validphys)

 \rightarrow Very flexible implementation of PDF Model (Abstract class in Colibri)

 \rightarrow A PDF model is a map *F* : params \rightarrow *PDF*(N_{fl}, N_x)

\rightarrow Subpackage of Colibri inheriting all features (also form reportengine and

41

Colibri PDF Models

\rightarrow grid pdf model used for the study [2404.10056]

