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Fantômas charged-pion PDFs 

The first physics application of the Bézier curve-based fitting methodology

[Kotz, AC, Nadolsky, Olness, Ponce-Chavez, PRD109]
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Global QCD analysis is an inverse problem

Parton Distribution Functions:  are determined from data through solving an inverse problem.
SciPost Phys. Proc. 15, 028 (2024)
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Figure 4: Schematic representation of an inverse problem. On the left of the figure
we see the space of data, with some dataset A. On the right we have the space
of measurable functions M(X ,Y) and the subset F that we explore with a given
parametrization.

4.1 NNPDF fits of lattice data

As explained in the previous section, lattice data are on the same footing as experimental input
into PDFs fits. In a series of papers, some of the lattice data have been incorporated in the
general fitting framework developed by the NNPDF collaboration [5, 6]. It is worthwhile to
emphasise that the lattice data are handled like any other dataset in NNPDF, with no need to
adjust the methodology. The only input needed is a robust estimate of the statistical covariance
and the systematic errors. This is modeled by considering the data, z, as stochastic variables
distributed according to a multi-dimensional Gaussian distribution, centred at the value of the
experimental measurement Z , with a covariance C , which we denote as

z ⇠N (Z , C) . (10)

Parametrization. In the NNPDF formalism, the parametrization of the function f is provided
by neural networks, see Ref. [12] for the details of the latest implementation. A sufficiently
large architecture provides a parametrization that is flexible enough to minize the functional
bias. We denote the neural net parametrization as g[✓], where ✓ is the set of parameters
(biases and weights of the neural network).

Posterior distribution. The posterior distribution in the space of functions – i.e. in the space
of functions that are parametrized by the neural networks – is described by a Monte Carlo set
of replicas. The replicas implement a bootstrap propagation of the statistical fluctuations of
data into the space of functions [13]. Each replica z(k) is obtained by generating a set of
pseudo-data,

z(k) = Z + "(k), k = 1, . . . Nrep , (11)

where "(k) are distributed according to N (0, C).
The set of replicas yields an ensemble of pseudo-data that reproduces the statistical dis-

tribution of the experimental data as encoded in the covariance matrix. For each replica, we

028.7

del Debbio, SciPost Phys. Proc. 15, 028 (2024) 

⇨ data as functional  of a model  

⇨  represents the underlying truth, but is not uniquely determined by current data

𝒢 f
f

Two main approaches to model   in global analyses: 


use an explicit parametrization

use neural networks

f
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Polynomial approximators enhance the usage of  explicit parametrizations

Universality  
Just like neural networks, these polynomial functional forms can represent any arbitrary PDF 
shape. 

Interpretability  
The shape of PDFs is controlled by PDF values at specific  (control points) and asymptotic 

limits ( ), reframing the role of parameters. It allows for more stability in the optimization. 

Controllable framework 
They provide a controllable framework, including features like invariance under the initialization 
of higher degree polynomials.


Representative sampling 
They facilitate exploration of the model space from the perspective of parametrization choice. 

Separation of  independent uncertainty contributions 
By isolating uncertainty contributions from parametrization and other priors, these forms 
facilitate the use of information criteria.

x
x → 0,1
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Generation of  parametrizations
metamorph is based on Bézier curves — polynomial on a Bernstein basis

8

III. TESTING LARGE-x PDFS IN EXPERIMENTAL MEASUREMENTS

A. Bézier curves as polynomial interpolations of discrete data

Models of the hadron structure make concrete predictions for the x dependence of the structure functions and
PDFs. One can straightforwardly check the agreement of a given model with an experimental observation within
the uncertainties. A stronger assertion, that the experiment demands the 1� x dependence of the PDFs to follow a
specific power law, is di�cult to demonstrate since the functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant structures that disagree with the global trend. Even when the
PDF functional forms are restricted to be polynomial, the discrete experimental data can be compatible with multiple
functional forms.

To illustrate why, consider an idealized example, in which we seek a polynomial function f
(n)(x) of degree n to

interpolate k + 1 data points {x0, p0}, {x1, p1},..., {xk, pk} that have no uncertainty. Our points satisfy 0  xi  1.
From mathematics, we know that the existence and number of the interpolating solutions depend on the degree n of
the polynomial.

If n = k, the unisolvence theorem guarantees that there exists a unique interpolating polynomial going through
all points: f

(n)(xi) = pi. Two equivalent closed-form solutions for the interpolating polynomial are given by the
Lagrange polynomial,

L
(n)(x) ⌘

kX

i=0

pi

kY

m=1
m 6=i

x� xm

xi � xm
for n = k, (14)

and by a Bézier curve of degree n,

B
(n)(x) =

nX

l=0

cl Bn,l(x), (15)

constructed from Bernstein basis polynomials

Bn,l(x) ⌘

✓
l

n

◆
x
l(1� x)n�l

. (16)

Denote the vector B(n)(xi) as B. This vector can be written in a matrix form [50, 51],

B = T ·M · C, (17)

where C ⌘ kclk;

M ⌘ kmlpk with mlp =

8
><

>:
(�1)p�l

 
l

n

! 
n� p

n� l

!
, l  p

0, l > p

; (18)

and T ⌘ ktipk with tip = x
p
i . Here i runs from 0 to k, and l, p run from 0 to n.

Given the matrix P ⌘ kpik of data values, the matrix C for the Bézier curve B
(n)(x) going through all points

satisfies [51]

C = M
�1

· T
�1

· P for n = k. (19)

This equation shows that k+1 data points uniquely determine the polynomial of order n = k, assuming no experimental
errors.

If n < k, an interpolating solution that goes through all points may not exist. Rather, there is a Bézier curve that
minimizes the total squared distance to pi,

�
2(P,B) =

kX

i=0

⇣
B
(n)(xi)� pi

⌘2
= (P � T ·M · C)T · (P � T ·M · C). (20)

The matrix of the coe�cients of this Bézier curve is

C = M
�1

· (TT
T )�1

· T
T
· P for n < k. (21)

Bn,l(x) ⌘
✓
n
l

◆
xl(1� x)n�l

<latexit sha1_base64="/mQIJ9bG+BzTTQOFwxG+FhmcfcA="></latexit>

The Bézier curve can be expressed 
as a product of matrices:

vector of coefficients cl

matrix of binomial coefficients vector of  xl
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<latexit sha1_base64="/mQIJ9bG+BzTTQOFwxG+FhmcfcA="></latexit>

The Bézier curve can be expressed 
as a product of matrices:

vector of coefficients cl

matrix of binomial coefficients vector of  xl

AC & Nadolsky, Phys.Rev.D103 (2021) 
 

Kotz, AC, Nadolsky, Olness & Ponce-
Chavez, Phys.Rev.D109 (2024)

Bézier curve characterized by control 

points, vector of  :ℬ → P
matrix of  at xl {xCP}
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AC & Nadolsky, Phys.Rev.D103 (2021) 
 

Kotz, AC, Nadolsky, Olness & Ponce-
Chavez, Phys.Rev.D109 (2024)

8

III. TESTING LARGE-x PDFS IN EXPERIMENTAL MEASUREMENTS
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The Bézier curve can be expressed 
as a product of matrices:

vector of coefficients cl

matrix of binomial coefficients vector of  xl

Bézier curve characterized by control 

points, vector of  :ℬ → P
matrix of  at xl {xCP}

PDF shape: 
⇨ asymptotics ensured by a carrier function

⇨ sum rules imposed through normalization

x q(x,Q2
0) = A0

q x
Bq (1� x)Cq ⇥

⇣
1 + B(Nm)(x↵x , Q2

0; v)
⌘

<latexit sha1_base64="/6rCdF+4u5MpuJS8jPucjvQ5FPw="></latexit>

for PDF type  
(flavor, combination or gluon)

q =

v = {C,P}
<latexit sha1_base64="AEeJJ1152Lhhq16M6gn6pxPBMV0=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwISWpgm6EYjcuK9gHNKFMJpN26GQSZiaFEvIXbvwVNy4Ucas7/8ZJm0VtvTBw7jn3cOceL2ZUKsv6MUpr6xubW+Xtys7u3v6BeXjUkVEiMGnjiEWi5yFJGOWkrahipBcLgkKPka43buZ6d0KEpBF/VNOYuCEachpQjJSmBmbNSbhPRG5PJ9mtky70zexioWtlTgYHZtWqWbOCq8AuQBUU1RqY344f4SQkXGGGpOzbVqzcFAlFMSNZxUkkiREeoyHpa8hRSKSbzu7K4JlmfBhEQj+u4IxddKQolHIaenoyRGokl7Wc/E/rJyq4cVPK40QRjueLgoRBFcE8JOhTQbBiUw0QFlT/FeIREggrHWVFh2Avn7wKOvWafVmrP1xVG3dFHGVwAk7BObDBNWiAe9ACbYDBE3gBb+DdeDZejQ/jcz5aMgrPMfhTxtcv/g2hCw==</latexit>
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FIG. 1. Illustration of the metamorph routine. Upper plot:
set-up – a truth (solid ocher curve) can be extracted from a
distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
[NOTE: FO] To think about: Fig.1+2 send a strong message,
but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.

points, such that

Pi = B(xi) ! P 0
i = B(xi) + �B(xi)

! P 0 = (B0(x1) + �D,B0(x2) + �E, · · · ) ,
(13)

with i running from 1 to the length of the vector P for
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0.2

0.3

x

x1
.5
f(x

) X, ↕: Control points

Nm = 4, αx = 0.45

FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
product of the updated carrier function (short-dashed red
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for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.
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X = fixed CPs  
↕︎= free CPs

Shift of the control points  
replace free parameters


 allow the carrier to vary 

= degree of polynomial can vary
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(δDq, . . . )
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metamorph fit:
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0) = A0

q x
Bq (1� x)Cq
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⇣
1 + B(Nm)(x↵x , Q2
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<latexit sha1_base64="hX96vDKQefeXNpBF4CETWk8vzxY="></latexit>

Unisolvent systems for = # CPs-1. Nm

Bézier-curve methodology— toy model
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Fantômas unleashed
Code to be released soon! 

 
Kotz, AC, Hobbs, Nadolsky, Olness ,  

Ponce-Chavez & Purohit,  2412.XXXXX)
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Reparametrization invariance
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The metamorph’s polynomial degree can be increased initially without 
modifying the shape of the PDF.
[AC & Nadolsky, PRD103]
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really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.

points, such that

Pi = B(xi) ! P 0
i = B(xi) + �B(xi)

! P 0 = (B0(x1) + �D,B0(x2) + �E, · · · ) ,
(13)

with i running from 1 to the length of the vector P for
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FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
product of the updated carrier function (short-dashed red
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X = fixed CPs  
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The fixed CPs are the intersection points between the carrier and the final metamorph.

The fixed CPs set the shape of the curve ; the free CPs act through the minimization 

procedure. 

Reparametrization invariance
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The metamorph’s polynomial degree can be increased initially without 
modifying the shape of the PDF.
[AC & Nadolsky, PRD103]
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Stability of  the framework

Starting with a low polynomial degree, we can add free control points one by one and check the 
convergence of the minimization procedure.

Incremental addition of CPs can only decrease the chisquare from the previous step.
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5

FIG. 1. Illustration of the metamorph routine. Upper plot:
set-up – a truth (solid ocher curve) can be extracted from a
distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
[NOTE: FO] To think about: Fig.1+2 send a strong message,
but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.

points, such that

Pi = B(xi) ! P 0
i = B(xi) + �B(xi)

! P 0 = (B0(x1) + �D,B0(x2) + �E, · · · ) ,
(13)

with i running from 1 to the length of the vector P for
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FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
product of the updated carrier function (short-dashed red
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curve) and a Bézier curve of degree Nm obtained through390

Eq. (12) with the control points as in Eq. (13), minimiz-
ing an objective function by pulling the control points.
The latter can enhance the potential of the Fantômas

method further by distinguishing two categories: CPs
that are fixed to stay on the carrier function (blue crosses395

in Fig. 1) and CPs that are free to depart from the
updated carrier (yellow arrows).

�
�
�
���
�

����

�
�

�
�
��������

Metamorph
Average

� Pseudodata

Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

x

x1
.5
f(x

)

Nm = 4, αx = 0.45, Nrep = 50

FIG. 3. The Fantômas technique illustrated by applying the
bootstrap (or importance) sampling on the data (upper plot)
or the Fântomas methodology, that consists in sampling over
representative choices for the CPs and the scaling factor ↵x

(lower plot). The resulting uncertainties are displayed in cyan
(bootstrap) and green (parameter-space sampling).

The ultimate purpose for designing the metamorph
methodology concerns the quantification of uncertainty.
Once a central fit has been determined, say, the long-400

dashed cyan curve of Fig. 1, its full statistical meaning

is obtained through the propagation of the two classes
of uncertainties, namely the aleatory and epistemic un-
certainties REF. The aleatory class consists of statistical
uncertainties that propagate the experimental errors. In405

Fig. 3, we illustrate them using the bootstrap method,
one of the possible error propagation technique. Also
called resampling or importance sampling, it consists in
generating N replicas of the data set according to a
probability distribution. Each set of fluctuated data is410

fitted through metamorph (light cyan curves in the upper
plot of Fig. 3); their (unweighted) average is illustrated
here in green. The curves obtained after bootstrapping
all correspond to the same metamorph settings (here
(Nm = 4,↵x = 0.45), unvaried CPs). To account for the415

epistemic uncertainties, it is necessary to sample over
the space of solutions, which in the case of Fantômas

means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
how the input in matrix T impacts the sensitivity of
the output coe�cient vector C, the condition number is
computed along with the fits, following the Frobenius430

matrix norm. Users should seek to minimize this metric
by setting up a well behaved T matrix. This is achieved
by taking advantage of the metamorph parameters, e.g.
power stretching (↵x). [NOTE: FO] OK??? (↵x).

435

The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
tions included in xFitter, the metamorph functions can be440

used for any flavor of choice by including the metamorph
parameterization in pdfparams.
The metamorph parameterization requires several pa-

rameters to be used. Unlike other parameterization, the
parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
guess for the carrier parameters need to be provided.455

2 https://www.xfitter.org/xFitter/
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Eq. (12) with the control points as in Eq. (13), minimiz-
ing an objective function by pulling the control points.
The latter can enhance the potential of the Fantômas

method further by distinguishing two categories: CPs
that are fixed to stay on the carrier function (blue crosses395

in Fig. 1) and CPs that are free to depart from the
updated carrier (yellow arrows).
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FIG. 3. The Fantômas technique illustrated by applying the
bootstrap (or importance) sampling on the data (upper plot)
or the Fântomas methodology, that consists in sampling over
representative choices for the CPs and the scaling factor ↵x

(lower plot). The resulting uncertainties are displayed in cyan
(bootstrap) and green (parameter-space sampling).

The ultimate purpose for designing the metamorph
methodology concerns the quantification of uncertainty.
Once a central fit has been determined, say, the long-400

dashed cyan curve of Fig. 1, its full statistical meaning

is obtained through the propagation of the two classes
of uncertainties, namely the aleatory and epistemic un-
certainties REF. The aleatory class consists of statistical
uncertainties that propagate the experimental errors. In405

Fig. 3, we illustrate them using the bootstrap method,
one of the possible error propagation technique. Also
called resampling or importance sampling, it consists in
generating N replicas of the data set according to a
probability distribution. Each set of fluctuated data is410

fitted through metamorph (light cyan curves in the upper
plot of Fig. 3); their (unweighted) average is illustrated
here in green. The curves obtained after bootstrapping
all correspond to the same metamorph settings (here
(Nm = 4,↵x = 0.45), unvaried CPs). To account for the415

epistemic uncertainties, it is necessary to sample over
the space of solutions, which in the case of Fantômas

means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
how the input in matrix T impacts the sensitivity of
the output coe�cient vector C, the condition number is
computed along with the fits, following the Frobenius430

matrix norm. Users should seek to minimize this metric
by setting up a well behaved T matrix. This is achieved
by taking advantage of the metamorph parameters, e.g.
power stretching (↵x). [NOTE: FO] OK??? (↵x).

435

The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
tions included in xFitter, the metamorph functions can be440

used for any flavor of choice by including the metamorph
parameterization in pdfparams.
The metamorph parameterization requires several pa-

rameters to be used. Unlike other parameterization, the
parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
guess for the carrier parameters need to be provided.455

2 https://www.xfitter.org/xFitter/

if bootstrapped

if sampled over metamorph settings

sampling on the distribution of data 
uncertainties

sampling over parametrizations

Bézier-curve methodology— toy model

Both the statistic (e.g. bootstrap) and the systematic (e.g. 

metamorph sampling) uncertainties should be accounted for.

[AC et al, PRD107, 2205.10444]
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Classification

Fantômas PDFs 


⇨ We generated  fits corresponding to  sets for .


⇨ Well-behaved (convergence + fixed soft constraints) fits are kept.


⇨ Fits within  are kept.

π

N ∼ 100 N {Nm, P, αx}

χ2 + δχ2 = χ2 + 2(Npts − Npar)

0.01 0.03 0.1 0.3 0.5 0.7 1
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x
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F

π+ (MC) PDFs at Q=1.4 GeV, 68% c.l. (band)

xV

xS

xg/2

In progress: automatize the selection based on shapes  [UNAM’s group] and use of information criteria 
— likelihood-ratio test and quantititative criteria  [see K.. Mohan’s talk]


The final bundle is generated from the 5 most 
diverse shapes at .Q0
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Likelihood-ratio test

P (a|D) / P (D|a)P (a)

, exp(��2
tot) / exp(��2) exp(��2

prior)
<latexit sha1_base64="5UXH7xmeiOXtaCKzMDVlokoiYO4="></latexit>

�2
tot = �2 + �2

prior
<latexit sha1_base64="6WdaWxpAw64yz63b1mNly1uYJ6c=">AAACNHicfVDLSgMxFM34rPU16tJNsCiCUGaqoBuh6EZwU8E+oFNLJk3b0MxkSO6IdZiPcuOHuBHBhSJu/QbTx0Jb8UDgcM653NzjR4JrcJwXa2Z2bn5hMbOUXV5ZXVu3NzYrWsaKsjKVQqqaTzQTPGRl4CBYLVKMBL5gVb93PvCrt0xpLsNr6EesEZBOyNucEjBS0770aJffFJoJ9gJf3iWepopHoPk9wyAhTfdOR4mDf4KR4lKladPOOXlnCDxN3DHJoTFKTfvJa0kaBywEKojWddeJoJEQBZwKlma9WLOI0B7psLqhIQmYbiTDo1O8a5QWbktlXgh4qP6cSEigdT/wTTIg0NWT3kD8y6vH0D5pJDyMYmAhHS1qx8LUgQcN4hZXjILoG0JMB+avmHaJIhRMz1lTgjt58jSpFPLuYb5wdZQrno3ryKBttIP2kYuOURFdoBIqI4oe0DN6Q+/Wo/VqfVifo+iMNZ7ZQr9gfX0DmGKsqA==</latexit>

Independent contributions to uncertainty:   
the parametrization contributes to the (log)-likelihood but constraints on the parameters, …, 
contribute to the prior.

On which basis are PDFs accepted or rejected?

Likelihood ratios: 

two replicas can be ordered according to their relative likelihood or relative prior.
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Combination

 criterion Δχ2 = 1 For   PDFs, 
,

π+

q = V = 2(u − ū)
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Bundled models

Models combined using METAPDF


Update on the mp4lhc and mcgen codes 
in the context of Fantômas

[Kotz et al, in progress]

 [Gao & Nadolsky, JHEP07]
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Tolerance

Fantômas unlocks the concept of tolerance:  

multiple parametrizations with respective  uncertainty can be bundled into a  error 
band.

separation of constraints’contributions

Δχ2 = 1 ∼ Δχ2 > 1

Epistemic vs. aleatory uncertainties

Statistical uncertainty propagated from 
experiments— irreducible

Uncertainty due to lack of knowledge

—bias (may be reduced)

We (CT) are looking into information criteria to quantify the tolerance encompassing 
multiple sources of  uncertainties.
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metamorph routine in 

xFitter
PDF Fitting package

xFitter developers

March 17, 2017

Abstract

The determination of the proton patron distribution functions is a complex endeavor involving
several physics processes. The main process is deep-inelastic scattering and the central data set
covering most of the proton structure phase space is provided at the HERA ep collider. Further
processes (fixed target DIS, ppbar collisions etc.) provide further constraints for particular aspects:
flavor separation, very high Bjorken-x etc. In particular, the precise measurements obtained or to
come from LHC will continue to improve the knowledge of the PDF. The xFitter project aim at
providing a framework for QCD analyses related to proton structure in the context of multi-processes
and multi-experiments. The framework includes modules or interfaces enabling a large number of
theoretical and methodological options, as well as a large number of relevant data sets from HERA,
Tevatron and LHC. This manual explains the theoretical input used in the QCD analysis, the fit
methodology and the installation procedure of the program. More information and the package
downloads can be found on the web site http://xfitter.org.

1 Introduction

This manual provides a short description of the xFitter program which can be used to determine un-
polarised proton parton distribution functions (PDFs). The parton distribution functions are needed to
calculate cross sections for ep, pp, and pp colliders and thus they are required for interpretation of the
data collected at the LHC and future colliders.

A schematic structure of the xFitter is illustrated in Fig. 1 which encapsulates all the current
functionality of the platform.

Initialisation

Data
– Collider, Fixed Target:

ep, µ p
– Collider: pp, pp̄

Theory
– PDF Parametrisation
– QCD Evolution:

DGLAP (QCDNUM),
non-DGLAP (CCFM, dipole)

– Cross Section Calculation

QCD Analysis
– Treatment of the Uncertainties
– Fast c2 Computation
– Minimisation (MINUIT)

Results
– PDFs, LHAPDF, TMDlib Grids
– as, mC , . . .
– Data vs. Predictions
– c2, Pulls, Shifts

Figure 1: Schematic structure of the xFitter program.

This manual is structured such that it first describes briefly the theoretical input (section 2), followed
by a description of the PDF parameterisation (section 3.1) and various �2 functions used in the minimisa-
tion (section 3.2). The minimisation is based on the standard MINUIT program [1] which is not discussed
here. Section 5 is dedicated to program installation instructions for di↵erent fit scenarios (section 5.1)
and provides a description of the program steering cards, with the output options given in section 5.2.

2 Theoretical Input

The main features of QCD theory are confinement (at short ranges the quarks are strongly bound inside
protons) and asymptotic freedom (at large scales the coupling constant of the strong force decreases and
quarks become quasi-free partons). The factorisation theorem exploits these features by separating short
and long distances processes, such that structure functions can be written as a convolution between calcu-
lable parts (hard scattering coe�cients) and non-calculable parts (parton distribution functions (PDFs)),
which are therefore parametrised and determined from data.

4

metamorph routine — PhD thesis of L. Kotz (SMU)

metamorph requires inputs from the user:


•  — degree of polynomial


•  of control points


• fixed or free control points

• stretching parameter

Nm

{x, fin(x)}

Code to be released soon! 
 

Kotz, AC, Hobbs, Nadolsky, Olness ,  
Ponce-Chavez & Purohit,  2412.XXXXX)
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Conclusions

Bézier-curve methodology

⇨ Universality 

⇨ Interpretability 

⇨ Controllable framework

⇨ Representative sampling

⇨ Separation of independent uncertainty 
contributions 

Towards epistemic PDF uncertainties with Fantômas4QCD. 
 

Towards augmenting the aleatory  uncertainties with the uncertainty due to parametrization.Δχ2 = 1

[Kotz, AC, Nadolsky, Olness, Ponce-Chavez, PRD109] 
[AC, Hobbs, Kotz, Nadolsky, Olness, Ponce-Chavez, Purohit, soon]
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Regression for data-based analyses

Monte Carlo fits, with the mean and variance in Figs. 5–7
computed as in Eqs. (18).
The comparison with the Drell-Yan cross sections

d2σDY=d
ffiffiffi
τ

p
dxF in Fig. 5 indicates that the data can be

well described by the fitted pion PDFs within the frame-
work of the perturbative QCD calculation at next-to-
leading order (NLO) in αs. The data-to-theory ratios are
shown as a function of xF in various bins of

ffiffiffi
τ

p
for both the

Fermilab E615 [5] and CERN NA10 [4] datasets, with the
latter separated into the two pion beam energies, Eπ ¼ 194
and 286 GeV. The ratios are generally consistent with
unity, within the uncertainties of the data, across the entire
range of xF and

ffiffiffi
τ

p
shown, with χ2dat values ≲1 for both

experiments. The experimental uncertainties on the NA10
data are somewhat smaller than the uncertainties on the

E615 data, although the E615 data extended to larger values
of xF. The theory uncertainty bands indicated in the ratios
reflect the uncertainties on the PDFs, which increase at the
highest values of xF.
For the comparisons with the LN data from HERA,

in Fig. 6 we show the data-to-theory ratios of the FLN
2

structure function [Eq. (8)] from H1 [6] and the ratio r
[Eq. (13)] of the leading neutron to inclusive proton cross
sections from ZEUS [7]. The ratios are shown as a function
of xπ over a large range of Q2 bins, ranging from Q2 ¼
7 GeV2 to Q2 ¼ 1000 GeV2, for two bins of momentum
fraction x̄L carried by the exchanged charged particle
(pion), restricted to x̄L < 0.1 and 0.1 < x̄L < 0.2 to ensure
pion exchange dominance [3,36]. Within the quoted
uncertainties, the H1 data can be well described by our

FIG. 5. Data-to-theory ratios for the xF dependence of the Drell-Yan cross section d2σDY=d
ffiffiffi
τ

p
dxF at fixed values of

ffiffiffi
τ

p
from the

E615 [5] (top) and NA10 [4] (bottom) experiments. The NA10 data are separated for the two pion beam energies of 194 GeV (bottom
left) and 286 GeV (bottom right), and the yellow bands represent the uncertainty on the theory calculations.

TOWARDS THE THREE-DIMENSIONAL PARTON STRUCTURE OF … PHYS. REV. D 103, 114014 (2021)

114014-9

Global analyses involve searching for extrema of a (log-)likelihood function.


(Very) simplified: 

χ2 =
Nexp

∑
i

(Di − ⟨T({x, a})⟩i)2

σ2
i

+penalty terms

discrete data point
theory prediction averaged,  

as a function of the variables {x} and free parameters {a}

[JAM21] 

The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure.

The comparison to data for various parametrizations can lead to equally good  values.χ2
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TOWARDS THE THREE-DIMENSIONAL PARTON STRUCTURE OF … PHYS. REV. D 103, 114014 (2021)

114014-9

Global analyses involve searching for extrema of a (log-)likelihood function.


(Very) simplified: 

χ2 =
Nexp

∑
i

(Di − ⟨T({x, a})⟩i)2

σ2
i

+penalty terms

discrete data point
theory prediction averaged,  

as a function of the variables {x} and free parameters {a}

[JAM21] 

The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure.

The comparison to data for various parametrizations can lead to equally good  values.χ2

That’s fine in the data region,  
but the results may vary greatly outside 
— extrapolation region. 

Why not adopt more than one form?

[Fantômas] 
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Behaviour on top of asymptotics is embedded into a Bézier curve 
⇨ asymptotics usually ensured by a carrier function

⇨ sum rules imposed through normalization

Bézier-curve methodology for global analyses
The reconstructed function may depend on the position 
and number of control points.

Global analyses can exploit this property to generate 
many functional forms. 

                    ⇒ polynomial mimicry

0.0 0.2 0.4 0.6 0.8 1.0
-0.5
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1.0
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2.0

x

u π
[x
]

f(x)=213. (1-x)2 x2 ×
(1-2.9 1 - x x +2.2 (1-x) x)

Fantômas4QCD program  

⇨   can modulate the PDFs in flexible ways at intermediate  using a set of free and fixed control pointsℬ x

x q(x,Q2
0) = A0

q x
Bq (1� x)Cq ⇥

⇣
1 + B(Nm)(x↵x , Q2

0; v)
⌘

<latexit sha1_base64="/6rCdF+4u5MpuJS8jPucjvQ5FPw="></latexit>

for PDF type  
(flavor, combination or gluon)

q =
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Sea and gluon behavior
Data sets vary between JAM and Fantômas: higher number of NA10 data points for us.


We explored small gluon and small sea scenarios:  
zero-gluon solutions are allowed; zero-sea ones are unfavored. 
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Pion PDFs at NLO — a convolution problem
Previous (modern) pion analyses:


xFitter [PRD102]

JAM    [PRL121, PRD103, PRL127]

We use the xFitter framework for pion PDFs.

We also extend the xFitter data by adding leading neutron (Sullivan process) data  
                                 — minimal small-  coverage [model-dependence in describing the pion as a target].x
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Fantômas pion PDF coverage
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Uncertainties in global analyses  
Δχ2=4

Δχ2=1 χmin
2
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The  is a paraboloid in  dimensions. 
We can project each dimension as

χ2 Npar

The  criterion accounts for the 68% 
experimental uncertainty for the fixed settings of the fit. 
Additionally, we account for the uncertainty due to the 
PDF functional form using the METAPDF method.
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Distribution of the pion momentum
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Fantômas4QCD
Momentum fraction  weighted by the PDF for 
x q = V, S, g

⟨xq(Q2)⟩ = ∫
1

0
dx x f q

1,π(x, Q2)

Highlight on the separation of sea and gluon distributions. 

The addition of leading-neutron data does not dramatically change 
the momentum fractions once the uncertainty appropriately include 
representative sampling. 
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Distribution of the pion momentum
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[Gao et al., PRD102]

[Meyer et al., PRD77]

[MSU, 2310.12034]

[Shanahan et al., PRD99]

[Martinelli et al., PLB196]

Lattice provides complementary access to momentum 
fractions— only the recent ETM coll. results have 
both.

All lattice results are work with different ensemble settings.
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Fantômas4QCD

The rôle of parametrization form in global analyses can be quantified 

A new c++ code automates series of fits using multiple functional forms, called metamorph.

[Kotz, AC, Nadolsky, Olness, Ponce-Chavez, PRD109] 
[AC, Hobbs, Kotz, Nadolsky, Olness, Ponce-Chavez, Purohit, soon]
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Comparing shapes, by evolving models from 
dangerously small scales.

Hints of the mechanism that drives the pion structure 

When testing polynomial shapes predicted from models, polynomial mimicry affects any interpretation. 
No if and only conditions are possible given the state-of-the-art.  [A.C. & Nadolsky, PRD103]

Contact-like kernel (NJL) and momentum-dependent 
kernel @ all order (DSE) calculations prescribe 
different initial conditions (  & shape), that evolve to 

different predictions at the scale of the data. 
Light-front quark model with data-inferred parameters 
finds a similar large-  behavior. 
 
[Ruiz-Arriola; Ding et al, PRD101]

[Pasquini et al, PRD107]
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 at 2x(u − ū) Q2 = 10 GeV2

26



A. Courtoy—IFUNAM________________PDFs from polynomial approximators____________________PDF4LHC2024

Comparing shapes, by evolving models from 
dangerously small scales.

Hints of the mechanism that drives the pion structure 

When testing polynomial shapes predicted from models, polynomial mimicry affects any interpretation. 
No if and only conditions are possible given the state-of-the-art.  [A.C. & Nadolsky, PRD103]

Contact-like kernel (NJL) and momentum-dependent 
kernel @ all order (DSE) calculations prescribe 
different initial conditions (  & shape), that evolve to 

different predictions at the scale of the data. 
Light-front quark model with data-inferred parameters 
finds a similar large-  behavior. 
 
[Ruiz-Arriola; Ding et al, PRD101]

[Pasquini et al, PRD107]

Q2
0

x

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

x

Pi
on

PD
F

xV (x,Q) at Q=3.2 GeV

FantoPDF

MAP LFWA

NJL (Q0=0.29 GeV)
DSE (Q0=0.33 GeV)
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