Classification and combination of PDFs using polynomial approximators

Aurore Courtoy

Instituto de Física National Autonomous University of Mexico (UNAM)

PDF4LHC meeting 2024

CERN 03/12/24 In collaboration with L. Kotz, P. Nadolsky, F. Olness, M. Ponce-Chavez and the CTEQ-TEA collaboration

1

Fantômas charged-pion PDFs

The first physics application of the Bézier curve-based fitting methodology

[Kotz, AC, Nadolsky, Olness, Ponce-Chavez, PRD109]

Global QCD analysis is an inverse problem

Parton Distril Sci Post unctions: are determined from data through solving an inverse problem.

del Debbio, SciPost Phys. Proc. 15, 028 (2024)

 \rightleftharpoons data as functional ${\mathcal G}$ of a model f

 \Rightarrow *f* represents the underlying truth, but is not uniquely determined by current data

Two main approaches to model f in global analyses:

- use an explicit parametrization
- use neural networks

A. Courtoy-IFUNAM_

Universality

Just like neural networks, these polynomial functional forms can represent any arbitrary PDF shape.

Interpretability

The shape of PDFs is controlled by PDF values at specific x (control points) and asymptotic limits ($x \rightarrow 0,1$), reframing the role of parameters. It allows for more stability in the optimization.

Controllable framework

They provide a controllable framework, including features like invariance under the initialization of higher degree polynomials.

Representative sampling

They facilitate exploration of the model space from the perspective of parametrization choice.

Separation of independent uncertainty contributions

By isolating uncertainty contributions from parametrization and other priors, these forms facilitate the use of information criteria.

Generation of parametrizations

Generation of parametrizations

Bézier curve characterized by **control points**, vector of $\mathscr{B} \rightarrow \underline{P}$:

$$\underline{P} = \underline{\underline{T}} \cdot \underline{\underline{M}} \cdot \underline{C}$$

matrix of x^l at $\{x_{CP}\}$

AC & Nadolsky, Phys.Rev.D103 (2021)

Kotz, AC, Nadolsky, Olness & Ponce-Chavez, Phys.Rev.D109 (2024)

Generation of parametrizations

Bézier-curve methodology—toy model

metamorph fit:

$$x q(x, Q_0^2) = A'_q x^{B_q} (1 - x)^{C_q}$$
$$\times \left(1 + \mathcal{B}^{(N_m)}(x^{\alpha_x}, Q_0^2; \underline{v}) \right)$$

Unisolvent systems for N_m = # CPs-1.

Shift of the control points $(\delta D_q, ...)$ replace free parameters

 $\delta B_q \& \delta C_q$ allow the carrier to vary

 N_m = degree of polynomial can vary

 α_x can vary

Fantômas unleashed

Kotz, AC, Hobbs, Nadolsky, Olness, Ponce-Chavez & Purohit, 2412.XXXX)

Three features:

invariance under change of free control points variation of the metamorph for change of fixed control points variation of the metamorph for change of stretching exponent

Reparametrization invariance

The metamorph's polynomial degree can be increased initially without modifying the shape of the PDF.

[AC & Nadolsky, PRD103]

PDFs from polynomial approximators

A. Courtoy—IFUNAM

PDF4LHC2024

Stability of the framework

Starting with a low polynomial degree, we can add free control points one by one and check the convergence of the minimization procedure.

Incremental addition of CPs can only decrease the chisquare from the previous step.

Bézier-curve methodology— toy model

A. Courtoy—IFUNAM_____Paramet

Parametrization study_____

Classification

Fantômas *π*PDFs

- \Rightarrow We generated $N \sim 100$ fits corresponding to N sets for $\{N_m, \underline{P}, \alpha_x\}$.
- ⇒ Well-behaved (convergence + fixed soft constraints) fits are kept.

In progress: automatize the selection based on shapes [UNAM's group] and use of information criteria – likelihood-ratio test and quantititative criteria [see K. Mohan's talk]

Likelihood-ratio test

Independent contributions to uncertainty:

the parametrization contributes to the (log)-likelihood but constraints on the parameters, ..., contribute to the prior.

$$\chi^2_{\rm tot} = \chi^2 + \chi^2_{\rm prior}$$

$$P(a|D) \propto P(D|a) P(a)$$

$$\Leftrightarrow \quad \exp(-\chi_{\text{tot}}^2) \propto \exp(-\chi^2) \exp(-\chi_{\text{prior}}^2)$$

On which basis are PDFs accepted or rejected?

Likelihood ratios:

two replicas can be ordered according to their relative likelihood or relative prior.

Combination

[Gao & Nadolsky, JHEP07]

A. Courtoy—IFUNAM_

[Kotz et al, in progress]

PDFs from polynomial approximators

Tolerance

We (CT) are looking into information criteria to quantify the tolerance encompassing multiple sources of uncertainties.

Fantômas unlocks the concept of tolerance:

- multiple parametrizations with respective $\Delta \chi^2 = 1$ uncertainty can be bundled into a $\sim \Delta \chi^2 > 1$ error band.
- separation of constraints' contributions

metamorph routine in

Code to be released soon!

Kotz, AC, Hobbs, Nadolsky, Olness, Ponce-Chavez & Purohit, 2412.XXXX)

xFitter

Figure 1: Schematic structure of the xFitter program.

Conclusions

Towards epistemic PDF uncertainties with Fantômas4QCD.

Towards augmenting the aleatory $\Delta \chi^2 = 1$ uncertainties with the uncertainty due to parametrization.

Bézier-curve methodology

- ➡ Universality
- ➡ Interpretability
- ➡ Controllable framework
- ➡ Representative sampling
- Separation of independent uncertainty contributions

xV (x,Q) at Q=1.4 GeV, 68% c.l. (band)

PDF4LHC2024

[AC, Hobbs, Kotz, Nadolsky, Olness, Ponce-Chavez, Purohit, soon]

[Kotz, AC, Nadolsky, Olness, Ponce-Chavez, PRD109]

17

Back up

Regression for data-based analyses

as a function of the variables {**x**} and free parameters {**a**}

The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure. The comparison to data for various parametrizations can lead to equally good χ^2 values.

Regression for data-based analyses

as a function of the variables {x} and free parameters {a}

The theory input depends on the PDFs, whose parametrization is an input to the minimization procedure. The comparison to data for various parametrizations can lead to equally good χ^2 values. [Fantômas]

That's fine in the data region, but the results may vary greatly outside — extrapolation region.

Why not adopt more than one form?

PDF4LHC2024

Bézier-curve methodology for global analyses

The reconstructed function may depend on the position and number of control points.

Global analyses can exploit this property to generate many functional forms.

 \Rightarrow polynomial mimicry

Behaviour on top of asymptotics is embedded into a Bézier curve

Fantômas4QCD program

 $\Rightarrow \mathscr{B}$ can modulate the PDFs in flexible ways at intermediate x using a set of free and fixed control points

Pion PDFs at NLO – a convolution problem

Previous (modern) pion analyses:

xFitter [PRD102] JAM [PRL121, PRD103, PRL127]

We use the xFitter framework for pion PDFs.

We also extend the xFitter data by adding leading neutron (Sullivan process) data

— minimal small-*x* coverage [model-dependence in <u>describing the pion as a target</u>].

Uncertainties in global analyses

The χ^2 is a paraboloid in N_{par} dimensions. We can project each dimension as

The $\Delta \chi^2 = 1$ criterion accounts for the 68% experimental uncertainty for the fixed settings of the fit. Additionally, we account for the uncertainty due to the PDF functional form using the METAPDF method.

Distribution of the pion momentum

FantoPDF momentum fractions at $Q=Q_0$

Momentum fraction x weighted by the PDF for q = V, S, g $\langle xq(Q^2) \rangle = \int_0^1 dx \, x f_{1,\pi}^q(x, Q^2)$

Highlight on the separation of sea and gluon distributions.

The addition of leading-neutron data does not dramatically change the momentum fractions <u>once the uncertainty appropriately include</u> <u>representative sampling</u>.

Distribution of the pion momentum

FantoPDF momentum fractions at $Q=Q_0$

Momentum fraction x weighted by the PDF for q = V, S, g $\langle xq(Q^2) \rangle = \int_0^1 dx \, x f_{1,\pi}^q(x, Q^2)$

Highlight on the separation of sea and gluon distributions.

The addition of leading-neutron data does not dramatically change the momentum fractions <u>once the uncertainty appropriately include</u> <u>representative sampling</u>.

	Name	$Q[{ m GeV}]$	$\langle x(u+ar{u})_{\pi^+} angle$	$\langle xg angle$
	FantoPDF	2	0.331(25)	0.24(10)
	HadStruct [19]	2	0.2541(33)	_
[Gao et al., PRD102]		3.2	0.216(19)(8)	_
	ETM [46]	2	0.261(3)(6)	_
	ETM [91]	2	$0.601(28) _{u+d}$	0.52(11)
[Meyer et al., PRD77]		2	_	0.37(8)(12)
[Shanahan et al., PRD99]		2	_	0.61(9)
[MSU, 2310.12034]		2	_	0.364(38)(36)
	ZeRo Coll. [95]	2	0.245(15)	_
[Martinelli et al., PLB196]		7	0.02	_

Lattice provides complementary access to momentum fractions — only the recent ETM coll. results have both.

All lattice results are work with different ensemble settings.

polynomial approximators

Fantômas4QCD

The rôle of parametrization form in global analyses can be quantified

A new c++ code automates series of fits using <u>multiple</u> functional forms, called metamorph.

[Kotz, AC, Nadolsky, Olness, Ponce-Chavez, PRD109] [AC, Hobbs, Kotz, Nadolsky, Olness, Ponce-Chavez, Purohit, soon]

Fantômas *π*PDFs

xV (x,Q) at Q=1.4 GeV, 68% c.l. (band)

Hints of the mechanism that drives the pion structure

When testing polynomial shapes predicted from models, polynomial mimicry affects any interpretation.No *if and only* conditions are possible given the state-of-the-art.[A.C. & Nadolsky, PRD103]

Contact-like kernel (NJL) and momentum-dependent kernel @ all order (DSE) calculations prescribe different initial conditions (Q_0^2 & *shape*), that evolve to different predictions at the scale of the data. Light-front quark model with data-inferred parameters finds a similar large-*x* behavior.

[Ruiz-Arriola; Ding et al, PRD101] [Pasquini et al, PRD107]

Comparing shapes, by evolving models from dangerously small scales.

Hints of the mechanism that drives the pion structure

When testing polynomial shapes predicted from models, polynomial mimicry affects any interpretation.No *if and only* conditions are possible given the state-of-the-art.[A.C. & Nadolsky, PRD103]

Contact-like kernel (NJL) and momentum-dependent kernel @ all order (DSE) calculations prescribe different initial conditions (Q_0^2 & *shape*), that evolve to different predictions at the scale of the data. Light-front quark model with data-inferred parameters finds a similar large-*x* behavior.

[Ruiz-Arriola; Ding et al, PRD101] [Pasquini et al, PRD107]

Quark-counting rules:
$$f_{q_v/\pi}(x) \xrightarrow[x \to 1]{} (1-x)^2$$

All pheno analyses find

$$f_{q_v/\pi}(x,Q_0^2) \xrightarrow[x \to 1]{} (1-x)^{\beta_{\text{eff}}=1}$$

 $2x(u - \bar{u})$ at $Q^2 = 10 \,\text{GeV}^2$

