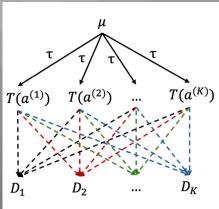


Uncertainty Quantification with Discrepant Data Sets

Kirtimaan Mohan – Michigan State University with

Mengshi Yan, Tie-Jiun Hou, Zhao Li & C.-P. Yuan arxiv: 2406.01664

@PDF4LHC Meeting 2024— CERN



Motivation

- Precision measurements need precise PDFs
- PDF fitting groups have to contend with tension in data
 - Many strategies to deal with this: For example, the use of tolerance ($\Delta \chi^2 = T^2$)
- PDF fitting groups also have to contend with epistemic uncertainties arising from model choice – see for e.g. talk by A. Courtoy
- This talk will describe an implementation of Bayesian Model Averaging (BMA) using the Gaussian Mixture Model (GMM).

Outline

- Simple 1-D toy example with W-boson mass
 - PDG scale factors
 - Bayesian Model Averaging and Information Criteria
- Demonstrate idea with a toy model of PDFs
- Summary

Simple 1-D toy example

Measuring Mass (Weight) PHY-101 Lab

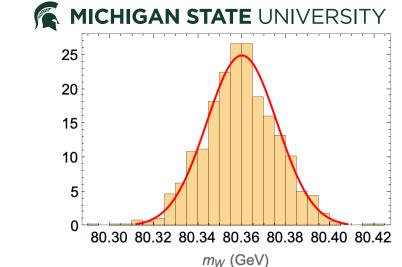
- Measure mass of W-boson
- Repeat measurement several times
- Minimize log-likelihood or loss function

•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$

•
$$L = \prod_{i} \frac{e^{\left[\frac{(\mu - x_i)^2}{\sigma_i^2}\right]}}{\sqrt{2\pi}\sigma_i}$$

- Determine best-fit value
 - $m_W = \mu = 80.36 \pm 0.016 \, GeV$

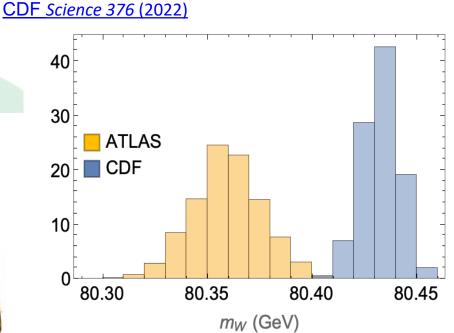
ATLAS-CONF-2023-004

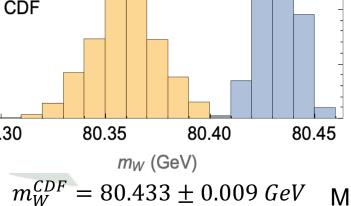


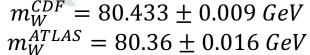
Measuring Mass (Weight) PHY-101 Lab

Repeat measurements with another balance

Manufactured by CDF



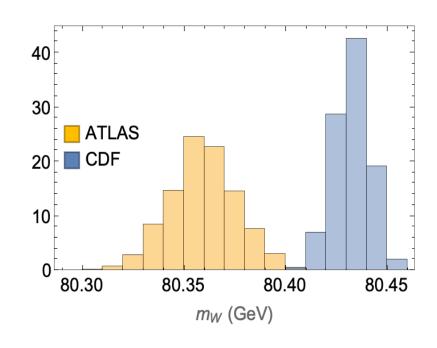




Manufactured by ATLAS

What should we do in this situation?

- Ideal: Understand why each experiment predicts a different value of mass
 - E.g. Maybe we didn't calibrate our balance properly?
 - Also make measurements with balances manufactured by different companies.
- Less than ideal: Combine the results in a statistically meaningful way that captures our lack of knowledge about the discrepancy – unknown systematics

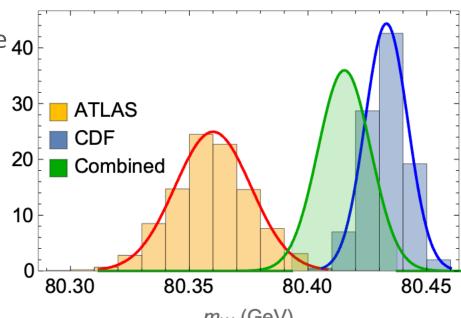


Measuring Mass (Weight) PHY-101 Lab

- How should we combine these two discrepant measurements to give one value of mass?
- Attempt #1: Let's repeat earlier exercise 40
 - Minimize loss function

•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$

- $m_W = 80.415 \pm 0.011 \, GeV$
- 2σ band does not cover both means
 - How should we interpret this?
- One familiar proposal
 - Increase tolerance $\Delta \chi^2 = T^2$; T > 1



PDG proposal – rescale uncertainties by a factor

- If the reduced $\chi^2 < 1$, the results are accepted and there is **no scaling**.
- If the reduced $\chi^2 > 1$, and the experiments are of comparable precision, then all errors are re-scaled by a common factor S, given by

the
$$S_{PDG} = \sqrt{\frac{\chi^2}{N-1}}$$

- If some of the individual errors are much smaller than others, then S_{PDG} is computed from only the most precise experiments. The criterium for these is given with reference to an ad hoc cutoff value.
- This tends to set the $\chi^2 \rightarrow 1$

W boson mass combination

Experiment	W-boson mass	Uncertainty		
DO-I [1]	80.483	0.084		
CDF-I [2]	80.433	0.079		
LEP [3]	80.376	0.033		
DO-II [4]	80.375	0.023		
LHCB [5]	80.354	0.032		
CDF-II [6]	80.4335	0.0094		
ATLAS23 [7]	80.36	0.016		

$$\overline{m}_W|_{\chi^2} = 80.4065 \pm 0.0072$$

$$\chi^2/\text{d.o.f} \simeq 3.3.$$

Scale CDF uncertainty from 9.4 MeV to 35~40 MeV

gives
$$\frac{\chi^2}{d.o.f} \sim 1$$

$$m_W \sim 80.384 \pm 0.01 \; GeV$$

Using goodness of fit to simultaneously evaluate the fit as well as to test model consistency.

BMA can be used to define an alternate measure of consistency

Bayesian Model Averaging

- Formalism

"All models are wrong, some are useful" - George Box

Review of Bayesian Formalism for χ^2

Data
$$D_i = \langle D_i
angle + \sigma_i \Delta_i$$
 . $\langle f
angle = (2\pi)^{N_D/2} \int f(\Delta) \prod_{i=1}^{N_D} d\Delta_i \exp\left(-rac{1}{2}\Delta_i^2
ight)$

$$\langle g \rangle = \frac{1}{\sqrt{(2\pi)^{N_D} \det C}} \int g(D) \prod_{i,j=1}^{N_D} dD_i \exp\left(-\frac{1}{2}(D_i - \langle D_i \rangle)(D_j - \langle D_j \rangle)C_{ij}^{-1}\right)$$

$$P(D|T(a)) = rac{1}{\sqrt{(2\pi)^{N_D} \det C}} dD \exp\left(-rac{1}{2} \sum_{i,j=1}^{N_D} (D_i - T_i(a))(D_j - T_j(a))C_{ij}^{-1}
ight)$$

$$P(T(a)|D) = \frac{P(D|T(a))P(T(a))}{P(D)}$$

Bayesian Model Averaging

Data from K different experiments

$$D_i^{(k)} = \langle D_i^{(k)} \rangle + \sigma_i^{(k)} \Delta_i^{(k)} = T_i(a^{(k)}) + \sigma_i^{(k)} \Delta_i^{(k)}$$

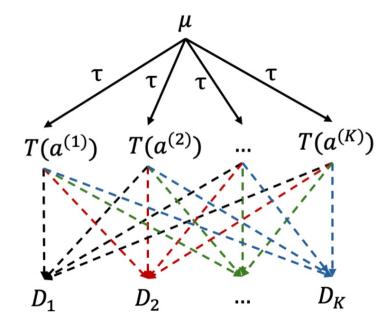
$$P(T(a^{(k)})) = \int d\mu d au P(T(a^{(k)})|\mu, au) p(\mu, au) \equiv w_k \qquad \sum_{k=1}^K w_k = 1.$$

Bayes' Theorem

$$P(D_i|T(a^{(k)}))P(T(a^{(k)})) = w_k P(D_i|T(a^{(k)})) = P(T(a^{(k)})|D_i)P(D_i)$$

$$\prod_{i=1}^{N_D} \left(\sum_{k=1}^K P(T(a^{(k)})|D_i) \right) \propto \prod_{i=1}^{N_D} \left(\sum_{k=1}^K w_k \mathcal{N}(D_i|T(a^{(k)}),\sigma_i) \right) \text{ Likelihood is a mixture model}$$

Bayesian Model Averaging (BMA)



$$\prod_{i=1}^{N_D} \left(\sum_{k=1}^K P(T(a^{(k)})|D_i) \right) \propto \prod_{i=1}^{N_D} \left(\sum_{k=1}^K w_k \mathcal{N}(D_i|T(a^{(k)}), \sigma_i) \right)$$

Information Criteria

- Given multiple models to explain data we would like to determine which model best fits data
 - This is accomplished by the likelihood
- Many models can have good likelihood, how do we select a model out of many such models?
 - Parsimony/ Occam's razor the simplest models are the ones you want
- How do we determine this balance between parsimony and goodness of fit?
 - Use information Criteria
- Many information criteria exist the most popular being the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) and their variants

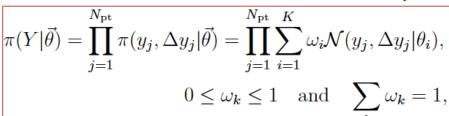
Akaike Information Criteria

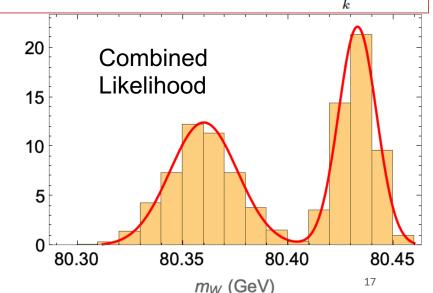
- Test how similar two probability distributions are: P(D|T) and P(D).
- Several metrics for measuring the difference between probability distributions,
 Kullback–Leibler divergence is one of them
- $D_{KL}(P(D|T)||P(D)) = \int dD P(D) \log \frac{P(D|T)}{P(D)}$
- This can be determined asymptotically and leads to the AIC
- AIC = $-2\log(P(D|T)) + 2N_{parm}$
- The smallest value of AIC is a measure of the balance between goodness of fit and model complexity

Gaussian Mixture Model for BMA

 $\mathcal{N} = \frac{e^{\left[\frac{(\mu - x_i)^2}{\sigma_i^2}\right]}}{\sqrt{2\pi}\sigma_i}$

- Start by parameterizing the likelihood as a sum of Gaussians
- In this simple example we know there are two Gaussians, i.e. K= 2
- In general, the value of K needs to be determined discussed later
- Introduced a new parameter ω_k weights
- Constraints on ω_k ; ensures proper normalization and interpretation as a probability distribution function
- For simplicity we'll use equal weights here
- In reality it is an additional fit parameter
- See Interpretation in Bayesian formalism later.





MICHIGAN STATE UNIVERSITY

Determine mean and variance for GMM

Difference

between

Gaussians

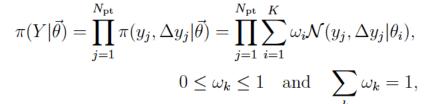
Mean

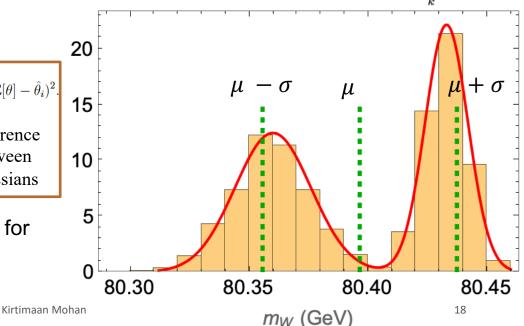
$$\mathbb{E}[\theta] = \sum_{i=1}^{K} \omega_i \hat{\theta}_i.$$

$$\begin{array}{ll} \text{cov}_{\text{GMM}} &=& \sum_{i=1}^{K} \omega_{i} \ \text{cov}_{\text{GMM},i} + \sum_{i=1}^{K} \omega_{i} (\mathbb{E}[\theta] - \hat{\theta}_{i})^{2} \\ &=& \sum_{i=1}^{K} \omega_{i} \bigg(\sum_{j=1}^{N_{\text{pt}}} \frac{1}{\Delta y_{j}^{2}} \bigg(\frac{\partial y_{j}(\theta_{i})}{\partial \theta_{i}} \bigg)^{2} \frac{\mathcal{N}(y_{j}, \Delta y_{j} | \theta_{i})}{\pi(y_{j}, \Delta y_{j} | \vec{\theta})} \bigg)^{-1} + \sum_{i=1}^{K} \omega_{i} (\mathbb{E}[\theta] - \hat{\theta}_{i})^{2}. \\ & \text{Weighted sum of covariances} \\ & \text{of each Gaussian} \end{array}$$

Here we use the variance as an estimator for the standard error.

Alternatively, we could use the Observed Fisher Information Matrix





MICHIGAN STATE UNIVERSITY

Determine mean and variance for GMM

Mean

the likelihood.

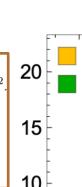
$$\mathbb{E}[\theta] = \sum_{i=1}^K \omega_i \hat{\theta}_i.$$

$$\begin{array}{ll} \operatorname{cov}_{\operatorname{GMM}} &=& \sum_{i=1}^K \omega_i \operatorname{cov}_{\operatorname{GMM},i} + \sum_{i=1}^K \omega_i (\mathbb{E}[\theta] - \hat{\theta}_i)^2 \\ &=& \sum_{i=1}^K \omega_i \bigg(\sum_{j=1}^{N_{\operatorname{pt}}} \frac{1}{\Delta y_j^2} \bigg(\frac{\partial y_j(\theta_i)}{\partial \theta_i} \bigg)^2 \frac{\mathcal{N}(y_j, \Delta y_j | \theta_i)}{\pi(y_j, \Delta y_j | \vec{\theta})} \bigg)^{-1} + \sum_{i=1}^K \omega_i (\mathbb{E}[\theta] - \hat{\theta}_i)^2. \\ &=& \operatorname{Weighted sum of covariances} \\ &=& \operatorname{of each Gaussian} \end{array}$$

Caveat about green curve: because we are used to it, it is possible to model this as a single Gaussian (green) – but we must be careful - it is **not** a faithful representation of

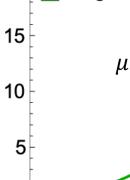
$$\pi(Y|\vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \pi(y_j, \Delta y_j | \vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \sum_{i=1}^{K} \omega_i \mathcal{N}(y_j, \Delta y_j | \theta_i),$$

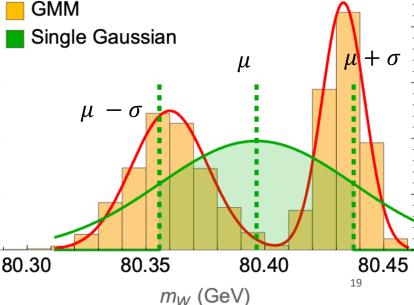
 $0 \le \omega_k \le 1$ and $\sum \omega_k = 1$,



Difference

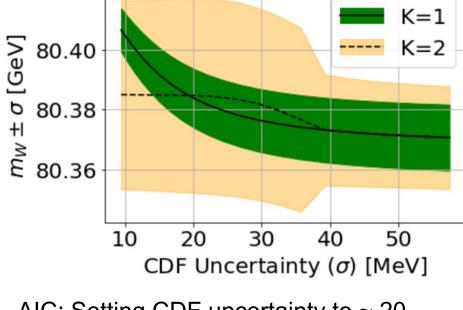
between Gaussians



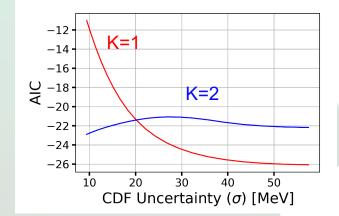


	MICHIGAN	STATE	UNIVERSITY
--	----------	-------	------------

Experiment	W-boson mass	Uncertainty
DO-I [1]	80.483	0.084
CDF-I [2]	80.433	0.079
LEP [3]	80.376	0.033
DO-II [4]	80.375	0.023
LHCB [5]	80.354	0.032
CDF-II [6]	80.4335	0.0094
ATLAS23 [7]	80.36	0.016



80.42



AIC: Setting CDF uncertainty to ~ 20 MeV makes data consistent, i.e. K=1 is favored.

Application of GMM and BMA to a toy model of PDFs

>1 parameter fits

MICHIGAN STATE UNIVERSITY

A toy model of PDFs with inconsistent data

"truth"
$$g(x) = a_0 x^{a_1} (1-x)^{a_2} e^{xa_3} (1+xe^{a_4})^{a_5}$$

Parameters of model: $\{a_0, a_1, a_2, a_3, a_4, a_5\}$

Pseudo-data generation

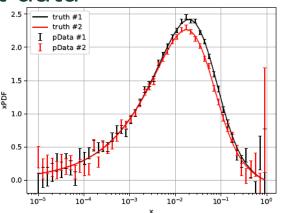
Central value
$$g_D(x) = (1 + r \times \Delta g(x))g(x)$$

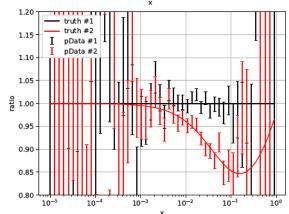
Uncertainty

$$\Delta g(x) = \frac{\alpha}{\sqrt{g(x)}}$$

	$N_{ m pt}$	a_0	a_1	a_2	a_3	a_4	a_5
pseudo-data #1	50	30	0.5	2.4	4.3	2.4	-3.0
pseudo-data $\#2$	50	30	0.5	2.4	4.3	2.6	-2.8

Inconsistent Pseudo-data generated by starting with different values of $a_4 \& a_5$

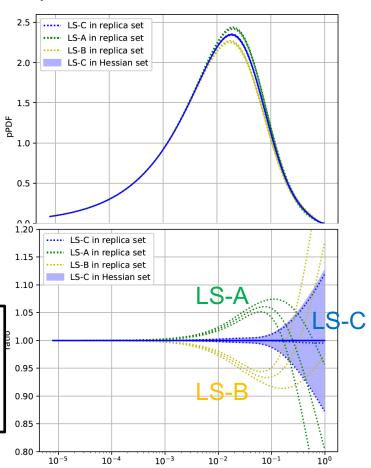




Fits to pseudo-data
$$\chi^2 = \sum_{j=1}^{N_{
m pt}} \left(\frac{D_i - T_i(\theta)}{\Delta D_i} \right)^2$$

fits	pseudo-data	best-fit a_4	best-fit a_5	$\chi^2_{\#1}/N_{\mathrm{pt}}$	$\chi^2_{\#2}/N_{\mathrm{pt}}$	
LS-A	# 1	2.32	-3.22	0.88	6.55	
LS-B	# 2	2.63	-2.73	7.00	1.02	
LS-C	# 1 and $# 2$	2.48	-2.94	2.27	2.56	
truth	# 1	2.4	-3.0	-	_	
truth	# 2	2.6	-2.8	-	-	
−2.4 T	16.6					
	LS-C in repliLS-A in repli				sid.	
2.6	LS-B in repli					
-2.6	x truth #1	ca set				
	x truth #2		LS-C		C D	
-2.8	+ LS-C best-fit	:	L3-0		0-D	
	LS-C 1-σ					
	LS-C 3-σ					
€ -3.0 				•		
				$IS_{-}A \cdot D$	ata set 1	only
			6	L3-A. D	ata set 1	. Offig
-3.2		į.		LS-B: D	ata set 2	only
		S-A	•			•
-3.4				LS-C: C	ombines	all
				data		
		C. Prince		data		
-3.6 		2.2 2.3	2.4 2.5	2,6 2	2.7 2.8	
1.	2.0 2.1		a ₄ 2.5	2.0 2	, 2.0	

MICHIGAN STATE UNIVERSITY

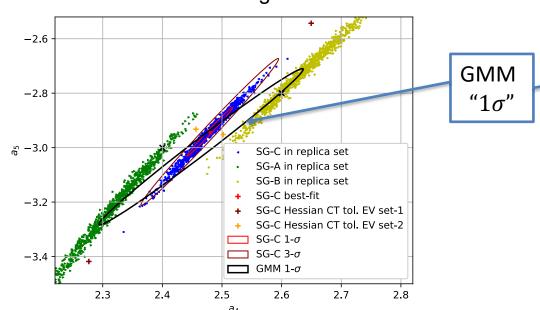


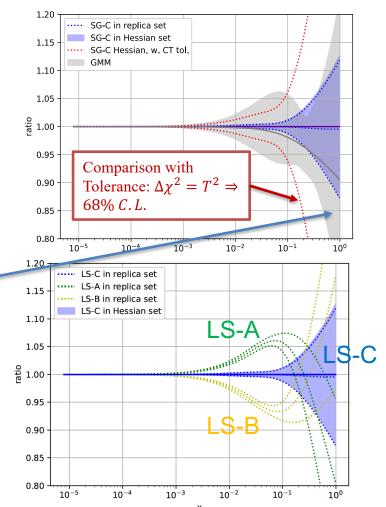
Fits to pseudo-data using the GMM

GMM uncertainty ellipse spans both replica sets. Unlike usual χ^2 method

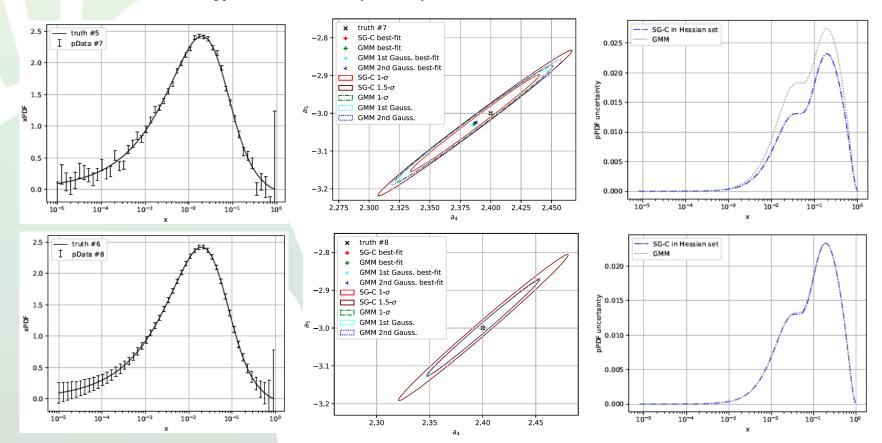
Axis of ellipse is different – covers uncertainties from individual data sets

Tolerance criteria both over and underestimates uncertainties in different regions





GMM reduces to the χ^2 likelihood (K= 1), when data is consistent



 $0 \le \omega_k \le 1$ and $\sum_k \omega_k = 1$,

How many Gaussians? How do we determine K?

Akaike Information Criterion (AIC) (Akaike, 1974)

Bayesian Information Criterion (BIC) Schwarz (Ann Stat 1978, 6:461–464)

AIC =
$$N_{\text{parm}} \log N_{\text{pt}} - 2\log L|_{\theta = \hat{\theta}}$$
,
BIC = $2N_{\text{parm}} - 2\log L|_{\theta = \hat{\theta}}$.

$$N_{\text{parm}} = 2K + (K - 1).$$

Use the lowest values of AIC & BIC to determine the best value of K and avoids over-fitting.

			K = 1	K=2	K = 3	K = 4		
	case-1	AIC	-102.2	-203.6	-194.9	-187.9		
Strong tension		BIC	-106.1	-211.2	-206.4	-203.2		
	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-55.0	-109.6	-109.2	-109.6		
Weak tension	case-2	AIC	-21.2	-15.4	-7.9	-0.2		
due to large		BIC	-25.0	-23.0	-19.3	-15.5		
uncertainty	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-14.5	-15.5	-15.7	-15.7		
	case-3	AIC	-219.3	-220.2	-212.8	-205.0		
		BIC	-223.2	-227.8	-224.3	-220.3		
	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-113.6	-117.9	-117.9	-118.1		
Consistent but	case-4	AIC	-117.8	-109.9	-102.1	-94.3		
data fluctuated		BIC	-121.6	-117.6	-113.6	-109.6		
	$N_{\rm pt}=50$	$-\mathrm{log}L$	-62.8	-62.8	-62.8	-62.8		
	case-5	AIC	-169.3	-161.5	-153.6	-145.8		
Consistent - No fluctuation		BIC	-173.1	-169.1	-165.1	-161.1		
Huctuation	$N_{\rm pt} = 50$	$-\mathrm{log}L$	-88.6	-88.6	-88.6	-88.6		
$N_{ m pt}$ $N_{ m pt}$ K								
$\pi(Y \vec{\theta}) = \prod_{i} \pi(y_j, \Delta y_j \vec{\theta}) = \prod_{i} \sum_{j} \omega_i \mathcal{N}(y_j, \Delta y_j \theta_i),$								
n(1 0)	$-\prod_{i=1}^{n} \binom{g_{j}}{i}$	$\rightarrow gj \mid v \mid$	$ \prod_{i=1}^{n} \angle_{i=1}^{n}$	•	$, -g_{\mathcal{I}} _{\mathcal{O}_{\mathcal{I}}})$,		
	j=1		j=1 $i=1$	L				

Summary & Outlook

- Showed how to repurpose the GMM, a well-known machine learning classification tool, as a statistical model to estimate uncertainty in PDF fits
 - Can also be used to classify PDF fitting data and find tensions in data sets unsupervised machine learning task
- Provides an implementation of Bayesian Model Averaging, to provide statistically robust estimates of uncertainty.
- Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF uncertainty estimation
 - Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn
- Here I only showed tension due to experimental inconsistencies, but this also applies to tension resulting from imprecise theoretical predictions.
- Can be used to determine a value of Tolerance in order to connect with existing prescriptions.
- Next steps: Apply to real data and pdf fit.