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https://arxiv.org/pdf/2406.01664
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Motivation

* Precision measurements need precise PDFs

* PDF fitting groups have to contend with tension in data
« Many strategies to deal with this: For example, the use of tolerance (Ay? = T?)

* PDF fitting groups also have to contend with epistemic uncertainties
arising from model choice — see for e.g. talk by A. Courtoy

* This talk will describe an implementation of Bayesian Model Averaging
(BMA) using the Gaussian Mixture Model (GMM).
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QOutline

* Simple 1-D toy example with W-boson mass
« PDG scale factors
« Bayesian Model Averaging and Information Criteria

 Demonstrate idea with a toy model of PDFs
* Summary

Kirtimaan Mohan 3



e lllllllllllle...>m>...=.==l S
(& MICHIGAN STATE UNIVERSITY

Simple 1-D toy example



Measuring Mass (Weight) PHY-101

« Measure mass of W-boson
« Repeat measurement several times

* Minimize log-likelihood or loss function

'X—ZM

O'.

o [ = Hi \/ﬁdi
 Determine best-fit value
e my =u=280.36+%0.016 GeV

ATLAS-CONF-2023-004
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https://cds.cern.ch/record/2853290
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Measuring Mass (Weight) PHY-101 Lab

Repeat measurements with another balance
CDF Science 376 (2022)

40+ T

30 _
‘[IATLAS

20+ [l CDF -

o- | '
80.30 80.35 80.40 80.45
L My (GeV)
CDF __
Manufactured by CDF my, © =80.433 £ 0.009 GeV' Manufactured by ATLAS

m{/‘lVTLAS — 80 36 + 0 016 GeV Kirtimaan Mohan


https://inspirehep.net/literature/2064224
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What should we do in this situation?

e |deal: Understand why each
experiment predicts a different value T

401
of mass -
- E.g. Maybe we didn’t calibrate our balance 30" -
properly? " []ATLAS —

. [ CDF -
« Also make measurements with balances 20: ]

manufactured by different companies.

10;
e Less than ideal: Combine the results in ' _
a statistically meaningful way that 02030 80.35 80.40 80.45
captures our lack of knowledge about mw (GeV)

the discrepancy — unknown
systematics

Kirtimaan Mohan 7
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Measuring Mass (Weight) PHY-101 Lab
 How should we combine these two discrepant measurements to give one

value of mass?

* Attempt #1: Let’s repeat earlier exercise 4q!

« Minimize loss function

(u —x;¢)?
. Xzzzi%

* my = 80.415 £ 0.011 GeV

e 20 band does not cover both means
« How should we interpret this?

e One familiar proposal
o Increase tolerance Ay? = T4 T > 1

« Does not provide a faithful representation of the probability distribution of m,,

20

10+

30

T

I

-1 ATLAS
- CDF 7T\
- |l Combined /
_ /
_2/
R |
80.30 80.35 80.40

drawn from our sample of experiments and results in poor goodness of fit

80.45
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PDG proposal — rescale uncertainties by a factor

* If the reduced y? < 1, the results are accepted and there is no scaling.

* If the reduced y? > 1, and the experiments are of comparable
precision, then all errors are re-scaled by a common factor S, given by

I

* |f some of the individual errors are much smaller than others, then
Sppc 1S computed from only the most precise experiments. The

criterium for these is given with reference to an ad hoc cutoff value.
* This tends to set the y% — 1

Kirtimaan Mohan 9



W boson mass combination

Experiment | W-boson mass | Uncertainty
DO-I [1] 80.483 0.084
CDF-I [2] 80.433 0.079
LEP [3] 80.376 0.033
DO-II [4] 80.375 0.023
LHCB [5] 80.354 0.032
CDF-II [6] 80.4335 0.0094

ATLAS23 [7] 80.36 0.016

M |y2 = 80.4065 & 0.0072

x%/d.o.f ~ 3.3.

Kirtimaan Mohan
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Scale CDF uncertainty from
9.4 MeV to 35~40 MeV

2
X 1
d.o.f

gives

my, ~ 80.384 + 0.01 GeV

Using goodness of fit to
simultaneously evaluate the fit as

well as to test model consistency.

BMA can be used to define an
alternate measure of consistency

10
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Bayesian Model Averaging
- Formalism

I”

“All models are wrong, some are useful”- George Box



Review of Bayesian Formalism for y* f& MICHIGAN STATE UNIVERSITY

Np 1
Data D; = <Dz> + oA, . () = (27r)ND/2/f(A)HdAieXP (—iAg)
=1
1 ol 1
_ oxp | — ={5: — 1D - (D.NC!
0= s ) o® I v, p (—5(0i - D, - D)5
i \/(27r)1\1fD dero P (_;z—,jZDl(Di_T( R ))%1)
P(D|T(a))P(T(a))
P(r(@)p) = TP

See Kovarik, Nadolsky & Soper arXiv:1905.06957 12



https://arxiv.org/abs/1905.06957
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Bayesian Model Averaging

k k k) A (k
Data from K different experiments D" = (D) + oM AP = T;(a®) + 0P A

Pr@®) = [ dudrP@ @) npur) = T w =1

Soyes o P(DIT@®)P(T(a®)) = wpP(Di|T (@) = P(T(a®)|Dy)P(Ds)

\

ﬁ (iP( a,(k) )| D; ) X H <Zwk/\/ D;|T( a(k)) )) Lill<elihood is a
1=1 \k=1

mixture model

13
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Information Criteria

e Given multiple models to explain data we would like to determine which model
best fits data

* This is accomplished by the likelihood
* Many models can have good likelihood, how do we select a model out of many
such models?
* Parsimony/ Occam’s razor — the simplest models are the ones you want
* How do we determine this balance between parsimony and goodness of fit?

e Use information Criteria

* Many information criteria exist — the most popular being the Akaike Information
Criteria (AIC) and Bayesian Information Criteria (BIC) and their variants

Kirtimaan Mohan 15
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Akaike Information Criteria

 Test how similar two probability distributions are: P(D|T) and P(D).

* Several metrics for measuring the difference between probability distributions,
Kullback—Leibler divergence is one of them

p(DIT)

y DKL(P(DlT)”P(D)) = J dD P(D)log P(D)

* This can be determined asymptotically and leads to the AIC
« AIC = —2log(P(DIT)) + 2 Npgrm

* The smallest value of AIC is a measure of the balance between goodness of fit and
model complexity

Kirtimaan Mohan 16



Gaussian Mixture Model for BMA

R
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[(u x) ]

Start by parameterizing the likelihood as a n(Y10) = H

sum of Gaussians

In this simple example we know there are two

Gaussians, i.e. K= 2

In general, the value of K needs to be determined —
discussed later

Introduced a new parameter wj, - weights

Constraints on wy; ensures proper normalization and
interpretation as a probability distribution function

For simplicity we’ll use equal weights here
In reality — it is an additional fit parameter
See Interpretation in Bayesian formalism later.

Kirtimaan Mohan

\/_al
Npt, Npt K
0 7 (ys, Aysl0) = T D wilV (us, A;6:).
Jj=1 j=11i=1
0<wr <1 and Zwkzl,
20; Combined PX ;
15 Likelihood :
10l / T\ ]
5 ]
o _
80.30 80.35 80.40 80.45

my (GeV) 1
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Determine mean and variance for GMM

Npt Npt K
7(Y16) = [ [ 7(u;» A1) = [ D wilV (v, Ay;6:)
K j=1 j=1 i=1
Mean E[f] = szﬂi- 0<wr <1 and Zwk =1
i=1 ' k
COVGMM = ;w,- COVGMM,i =+ ;wl(E[G] — 91)2 20 _ _f
S &1 Ay (0:) \° N (yz, Ay;6;) - [& 52 [ — 0 +o :
- ;w<; Ay?( 00; ) (43, Ay;10) ) +;%(E[O] - 15 : . ll. . ]
Weighted sum of covariances Difference " g . 5 —
of each Gaussian between 10+ /? . - .
Gaussians / . \ . : ]
| 71: [\ - i\
. ) 5 I / . \ n n 7
Here we use the variance as an estimator for _ / . \\ . : ]
the standard error. _ S = ﬁl_‘/ 5 Xq:
Alternatively, we could use the Observed 0 80.30 80.35 80.40 80.45
Fisher Information Matrix Kirtimaan Mohan 18
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Determine mean and variance for GMM

K
Mean E[f] = szﬂ}.'

coveMM = E W; COVGMM,i —l—E w; ( 0)2

= 1 (dy]( ))2N(y1 Ay;|b:) )

= w; +

; (Z Ay \ 06, (5. Ay |6)

Weighted sum of covariances
of each Gaussian

Caveat about green curve: because we are

used to it, it is possible to model this as a

single Gaussian (green) — but we must be
careful - it is not a faithful representation of

the likelihood.

Npt Npt K
7(Y10) = ] m(v;, Aysl0) = [] D wilV (v, Ay;16:)
j=1 j=1i=1
0<wr <1 and Zwk—l
k
D GMM I I T
K 120 ]
> wiElY] - 0:)*. . Single Gaussian A
i=1 t U +0
Difference 15 3 ] . . 1
(Ej)etwe.en [ U —ao :4\\ E E 1
aussians | 4. / . V.\ . ]
I . . '
5- //// \ : \
[ : N\ : .
ot A | 3 N 1 N
80.30 80.35 0.40 80.45

Kirtimaan Mohan
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W boson mass combination G MICHIGAN STATE UNIVERSITY

| Experiment | W-boson mass | Uncertainty |

DO-I [1] 80.483 0.084 =
CDF-I [2] 80.433 0.079 v
LEP [3] 80.376 0.033 O
DO-I [4] 80.375 0.023 5
LHCB [5] 80.354 0.032 H
CDF-II [6] 80.4335 0.0094 =
ATLAS23 [7] 80.36 0.016 &

10 20 30 40 50
CDF Uncertainty (o) [MeV]
AIC: Setting CDF uncertainty to ~ 20

MeV makes data consistent, i.e. K=1
is favored.

10 20 30 40 50
CDF Uncertainty (o) [MeV] Kirtimaan Mohan 20
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Application of GMM and BMA to a toy model of PDFs

>1 parameter fits
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A toy model of PDFs with inconsistent data

27 = truth #1

—— truth #2

“truth”  g() = ap 2™ (1 — x)*2e™* (1 + xe™)*® o] T
Parameters of model: {a,, a;, a,, as, a,, as}
Pseudo-data generation
Central value  gp(x) = (1 +r x Ag(z) )g () 0.0-10'-5 T 10
o B [Raish i
. Ag(ﬂf) = 115 — truth #2 |
Cmoettainty g(x) s :z::::;l
Npt |ap a1 as a3 | ag as E | hill hlriﬂil II]
pseudo-data #1 | 50 [ 30 05 24 43|24 -3.0 RfHfim ol
pseudo-data #2 | 50 | 30 0.5 24 43]2.6 -2.8 0.0 [ /
Inconsistent Pseudo-data generated by ] [ , |

10~° 10 1072 1072 107! 10°

starting with different values of a, & a-



Fits to pseudo-data *- %: (“;—5@)2 |

pPDF

fits  pseudo-data | best-fit ay best-fit a5 x%;/Npt  X%o/Npt
LS-A #1 2.32 -3.22 0.88 6.55
LS-B # 2 2.63 -2.73 7.00 1.02
LS-C # 1 and # 2 2.48 -2.94 2.27 2.56
truth #1 2.4 -3.0 - -
truth # 2 2.6 -2.8 - -
-2.4 T T T
LS-C in replica set 4
LS-A in replica set
—26-4 -+ LS-Binreplicaset
x truth #1
x truth #2
—2.84 # LS-Cbestfit
[ LS-Clo
[ LS-C3-0
& —3.0
LS-A: Data set 1 only
-3.2
34 LS-C: Combines all
{ data
-3.6 — . .
1.9 2.0 2.1 2.2 2.4 2.6 2.8

$\\|r
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ST

------ LS-C in replica set
...... LS-Ain replica set
------ LS-B in replica set

LS-C in Hessian set

15

1.0

/

0.5

..//

L AETY LS-A in replica set

T T
...... LS-C in replica set

------ LS-B in replica set
LS-C in Hessian set

10-5 104 1073

1072

10°




Fits to pseudo-data using the GMM [ wcrmom
. . . . 1.15 - -CIn e.55|anse
GMM uncertainty ellipse spans both replica sets. Unlike |~ o6 € Hessian, . CT tol.
usual y? method 0
Axis of ellipse is different — covers uncertainties from %
individual data sets g 100
Tolerance criteria both over and underestimates 0.95 1 ER——
uncertainties in different regions 090 1-| Tolerance: Ay? = T2 =
. wssl | 68%C.L.
207 0.80 L / !
G M M 107° - 1073 1072 107! 100
1.20 s
281 — e T L= A n eplicn et
10_ 1157 LS-B in replica set
l 110+ LS-C in Hessian set
il ' -
& =307 3 SG-C in replica set 1.05 - LS-A i
< SG-A in replica set ' i
ﬂ% SG-B in replica set S 100
35 ; [ + SG-C best-fit e
' -y‘" + SG-C Hessian CT tol. EV set-1 0.95 4
SG-C Hessian CT tol. EV set-2
. 1 SG-Clo 0.90 4
34478 - [ SG-C 3-0
E‘} — GMM 1l-0 0.85
2f3 214 2f5 2r6 2f7 2r8 0.80 ! } ! ! ! !
10-5 104 103 1072 107! 10°

ag




paur
G

MICHIGAN STATE UNIVERSITY

GMM reduces to the y? likelihood (K= 1), when data is consistent

2.51 — truth #5
I pData #7
2.0
1.5
&
%
1.0
0.5 4 il
0.0 4
T T T T T T'l
1075 107 1072 1072 107! 10°
259 — truth #6
I pbData#8
2.0
154
&
a
3
104
05 -
0.0
10— 10-¢ 10 102 10~ 100

T

x  truth #7

—2.84 + SG-C best-fit

+ GMM best-fit
GMM 1st Gauss. best-fit

< GMM 2nd Gauss. best-fit

=2.99 3 SG-C 1-0

[ SG-C 1.5-0

=21 GMM 1-0

GMM 1st Gauss.

as

%

7

-3.01 /ﬁ
GMM 2nd Gauss.
T
—=3.11 ‘
-3.24 | |
2,275 2,300 2.325 2.350 2.375 2.400 2.425 2.450
as
X truth #8
—2.84 + SG-C best-fit
+ GMM best-fit
GMM 1st Gauss. best-fit
< GMM 2nd Gauss. best-fit A?
=299 3 SG-C 1-0 1
[ SG-C 1.5-0
£ GMM 1-0
& GMM 1st Gauss.
=3.01 " 2
i GMM 2nd Gauss. 74
-3.1
t/
-3.2
2.30 2.35 2.40 2.45

as

0.025 4

0.020 4

pPDF uncertainty

0.010

0.005

0.000

0.020

inty

pPDF uncerta
=3
o
=
(=3

0.005

0.000

0.015 4

0.015

—-= SG-Cin Hessian set
------ GMM

-t

e e

T T T T
1073 10~ 107 1072

T
10°

—-= SG-Cin Hessian set
------ GMM
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How many Gaussians? How do we determine K?

‘Kzl K=2 |K=3 K=14

Akaike Information Criterion (AIC) ' nel AIC 1 1020 K2036 1019 1379
(Akaike, 1974) Strong tension BIC | -106.1 }-211.2 |-206.4 -203.2
Bayesian Information Criterion (BIC) Nptzlgo —jif;%L ;i% -11(19[-16 -13952 -1892-6
-A461— Weak tension case- mad TLo -l e
Schwarz (Ann Stat 1978, 6:461-464) oo to e pic Loso l 230 103 155
uncertainty Np=100 —logL | -145 | -155 -15.7 -15.7
case-3  AIC | 103 -220.2 -2128 -205.0
AIC = Nparm logNy — 2logL|,_;. BIC | -2232 -227.8 -2243 -220.3
N..=100 —logL | -113.6 -117.9 -117.9 -118.1
BIC = 2N, .. —2logL| .. pt &
parm 08 |0=0 — case-d  AIC N-117.8 1-1000 -102.1 943
g tuened | B e | eas 28 628
. pt=2 —log -62. -62. -62. -62.
Nparm = 2K + (K —1). : case-5  AIC 1-169.3 | -161.5 -153.6 -145.8
Coffllilcsttf;ti(;nNo BIC [-173.1 | -169.1 -165.1 -161.1
N.,=50 —logL | -88.6 | -88.6 -88.6 -88.6
Use the lowest values of AIC & pt—" %%
. Npt Npt K
BIC to determine the best value of ~(Y1]3) = Hﬂ(y-,Ay'lg) _ HZwW(y-, Ayil0:),
K N . J J J J
and avoids over-fitting. et =1 =1

0<wp,<1 and Zwkzl,
k


10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136

Summary & Outlook
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Showed how to repurpose the GMM, a well-known machine learning classification tool, as a
statistical model to estimate uncertainty in PDF fits

* (Can also be used to classify PDF fitting data and find tensions in data sets —
unsupervised machine learning task

Provides an implementation of Bayesian Model Averaging, to provide statistically robust
estimates of uncertainty.

Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF
uncertainty estimation
* Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn

Here | only showed tension due to experimental inconsistencies, but this also applies to
tension resulting from imprecise theoretical predictions.

Can be used to determine a value of Tolerance in order to connect with existing prescriptions.
Next steps: Apply to real data and pdf fit.

Kirtimaan Mohan 27



