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inverse problems

inverse problems are known to be ill-defined
yr = Ti[f]

result depends on assumptions

Many questions asked at this workshop are more easily answered if we
can build a common framework

Bayesian approach: framework to understand and compare

knowledge of f is encapsulated in the posterior distribution [talk by
Aleksander]
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likelihood & loss function

p(ylf) o< exp [=L(y, f)]
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all assumptions about the function f are in the prior p(f)

o for GP the prior covariance K dictates the fluctuations of f
e for parametrized functional forms f(z; 6)
o(5) = | asple 1506 - 1w:0)
true for NN + fixed functional forms [talk by Aurore]
e the solution will depend on the prior [talk by Tommaso]

¢ NNPDF methodology: MC sampling of p (and p) [talk by James]
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NNPDF at initialization - distribution over replicas
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(almost) Gaussian Process with covariance determined by the architecture
of the NN [hyperoptimization in Juan’s talk]

expected behaviour for large n (width of the network)
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how is p( f) estimated

e GP: MonteCarlo sampling of the posterior
[talks by Tommaso/Aleksander/James/Mark]

e fixed functional form

L=L.+ %HWMM(SOV

e NNPDF: flow towards minimum of p(y|f), stop training after 7" epochs

() = / a5 (f — fr)
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gradient descent - for all parametrizations
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where

O = (vuft)(vuft)T

is the Neural Tangent Kernel
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for linear data:

oT

y=FK)f = <8f

) =)

for wide neural networks
0, =0+0(1/n)

hence we get a linear equation for f;

% fi = O(FK)TCy (y — (FK) f,)
= —@Mft + b
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the rate at which features are learned is dictated by the
eigenvalues/eigenvectors of ©

there is a strong hierarchy in the eigenvalues (spectral bias)

consider for simplicity the case
Cy =0, (FK)=1
then

e = foxe + OxrxOnt (1= ) (y — fox)

coincides with GP posterior if © = K and ¢t — oo

however ¢t — oo is what we would call an overfitted solution, e = 0
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Components from 1 to 8 - linear scale
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NTK coefficients in function of t - different time scales
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a few more thoughts

fixed form parametrization do not have a t-independent NTK

a puzzling property
trO@ =trH

length of training: validation set, analytical control?
model dependence < uncertainty

correlations between PDF fits

Pyl fr1, fr2) p(fr1, fr2)
p(y)

p(fr1, fraly) =
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conclusions
e bayesian analysis offers an independent tool to look at inverse
problems
e all hypotheses are explicitly spelled out in the prior
e for linear data, we get analytical results useful to build intuition
e understand the training better
e comparison with other methods

e robust errors
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