

CLOSURE TESTING THE IMPACT OF DATA INCONSISTENCY

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

CERN, DECEMBER 3, 2024

PDF4LHC MEETING

CLOSURE TESTS

- Assume truth underlying $PDF \Rightarrow E.G.$ some random PDF replica
- GENERATE DATA DISTRIBUTED ACCORDING TO EXPERIMENTAL COVARIANCE MATRIX
- RUN WHOLE UNMODIFIED METHODOLOGY ON THESE DATA
- DO STATISTICS ON "RUNS OF THE UNIVERSE"

STATISTICAL INDICATORS

PDFS AND THEIR UNCERTAINTY (REMINDER)

i-th data prediction (replica average): $f_i^{\rm pred} = \frac{1}{N_{\rm rep}} \sum_n f_i^{(n)}$

PDF UNCERTAINTY (REPLICA COVARIANCE): $C_{ij}^{\text{PDF}} = \frac{1}{N_{\text{rep}}-1} \sum_{n} \left(f_i^{(n)} - f_i^{\text{pred}} \right) \left(f_j^{(n)} - f_j^{\text{pred}} \right)$

BIAS-VARIANCE RATIO

BIAS: $b^2 = \frac{1}{N_{dat}} \sum_{ij} \left(f_i^{pred} - f_i^{true} \right) C_{ij}^{-1} \left(f_j^{pred} - f_j^{true} \right)$; C_{ij} exp. covmat VARIANCE: $\sigma^2 = \frac{1}{N_{dat}} \frac{1}{N_{rep} - 1} \sum_{ij} \left(f_i^{(n)} - f_i^{pred} \right) C_{ij}^{-1} \left(f_j^{(n)} - f_j^{pred} \right)$ $R_{bv} = b/v$ DEVIATION FROM TRUTHS IN UNITS OF UNCERTAINTY

IN DATA EIGENVECTOR BASIS

N- σ QUANTILE

 ξ_n : FRACTION OF BIAS DISTN. WITHIN $n\sigma$ OF TRUTH

NNPDF4.0 CLOSURE TEST RESULTS:

NUMBERS

BIAS/VARIANCE RATIO AND ONE- σ QUANTILE

DATA-SPACE, DATA COVARIANCE MATRIX, OUT-OF-SAMPLE

PDF-SPACE & COV MATRIX

Dataset	$\sqrt{b/v}$	$\xi_{1\sigma}^{ m (data)}$	$\operatorname{erf}(R_{bv}/\sqrt{2})$	flavour	$\xi_{1\sigma}^{(\mathrm{pdf})}$
DY Top-pair Jets Dijets Direct photon Single top Total	$\begin{array}{c} 0.99 \pm 0.08 \\ 0.75 \pm 0.06 \\ 1.14 \pm 0.05 \\ 0.99 \pm 0.07 \\ 0.71 \pm 0.06 \\ 0.87 \pm 0.07 \\ 1.03 \pm 0.05 \end{array}$	$\begin{array}{c} 0.69 \pm 0.02 \\ 0.75 \pm 0.03 \\ 0.63 \pm 0.03 \\ 0.70 \pm 0.03 \\ 0.81 \pm 0.03 \\ 0.69 \pm 0.04 \\ 0.68 \pm 0.02 \end{array}$	$\begin{array}{c} 0.69 \pm 0.04 \\ 0.82 \pm 0.03 \\ 0.62 \pm 0.02 \\ 0.69 \pm 0.04 \\ 0.84 \pm 0.03 \\ 0.75 \pm 0.04 \\ 0.67 \pm 0.03 \end{array}$	$\Sigma g V V_3 V_8 T_3 T_8 Total$	$\begin{array}{c} 0.82 \pm 0.04 \\ 0.70 \pm 0.05 \\ 0.65 \pm 0.05 \\ 0.63 \pm 0.05 \\ 0.72 \pm 0.04 \\ 0.71 \pm 0.05 \\ 0.71 \pm 0.05 \\ 0.71 \pm 0.02 \end{array}$

- 25 "UNIVERSE RUNS", 45 REPLICAS EACH
- IN-SAMPLE DATA: PRE 2015
- OUT OF SAMPLE DATA: 2015-2020, MOSTLY LHC
- PDFs highly correlated \Rightarrow sampled at 4 points each

NNPDF4.0 CLOSURE TEST RESULTS: PICTURES

• PDF-SPACE MORE NOISY THAN DATA SPACE

NEW STATISTICAL INDICATORS

A. Barontini, M. Costantini, G. De Crescenzo, S.F., M. Ubiali, in preparation

PDFS AND THEIR UNCERTAINTY (REMINDER)

i-th data prediction (replica average): $f_i^{\text{pred}} = \frac{1}{N_{\text{rep}}} \sum_n f_i^{(n)}$ PDF uncertainty (replica covariance): $C_{ij}^{\text{PDF}} = \frac{1}{N_{\text{rep}}-1} \sum_n \left(f_i^{(n)} - f_i^{\text{pred}}\right) \left(f_j^{(n)} - f_j^{\text{pred}}\right)$

NORMALIZED BIAS

BIAS: $b^2 = \frac{1}{N_{dat}} \sum_{ij} \left(f_i^{pred} - f_i^{true} \right) C_{ij}^{-1} \left(f_j^{pred} - f_j^{true} \right)$; C_{ij} exp. covmat NORMALIZED BIAS: $R_b^2 = \frac{1}{N_{dat}} \sum_{ij} \left(f_i^{pred} - f_i^{true} \right) C_{ij}^{PDF^{-1}} \left(f_j^{pred} - f_j^{true} \right)$; DEVIATION FROM TRUTHS IN UNITS OF UNCERTAINTY IN PDF EIGENVECTOR BASIS

- CORRELATES EXPERIMENTALLY UNCORRELATED DATA SENSITIVE TO SAME PDF
- WEIGHS EXPERIMENTS BASED ON NUMBER OF DATA POINT

N- σ QUANTILE

ξ_n : FRACTION OF NORMALIZED BIAS DISTN WITHIN $n\sigma$ OF TRUTH

NEW CONSISTENT CLOSURE TEST

- 25 "UNIVERSE RUNS", 100 REPLICAS EACH
- FULL NNPDF4.0 DATASET, VARIOUS IN-SAMPLE OUT OF SAMPLE PARTITIONS BASED ON REPRESENTATIVE FOLDS
- **PDF** COVARIANCE MATRIX HIGHLY CORRELATED \Rightarrow PCA REDUCTION

NORMALIZED BIAS DISTRIBUTION

NNPDF4.0 UNCERTAINTIES SLIGHTLY OVERESTIMATED

THE INCONSISTENCY

THE MODEL

• GENERATE DATA WITH STAT+SYST UNCERTAINTIES $C = C^{\text{stat}} + C^{\text{syst}}$;

 $C_{ij}^{\text{syst}} = \sum_k \Delta_i^k \Delta_j^k; \ \Delta_i^k \Rightarrow k \text{-th systematics on } i \text{-th datapoint}$

• ASSUME SYSTEMATICS UNDERESTIMATED \Rightarrow PERFORM FIT WITH $\Delta_i^k \rightarrow \lambda \Delta_i^k$

 $\lambda = 1 \Rightarrow$ consistent; $\lambda = 0 \Rightarrow$ extreme inconsistency

PREDICTED UNCERTAINTY ON GENERATED DATA CONSISTENT EXTREME INCONSISTENCY

THE INCONSISTENCY

SCENARIOS

- "DIS": DIS ONLY FIT, IN-SAMPLE HERA DATA INCONSISTENT BULK INCONSISTENCY
- "DY": GLOBAL FIT, HIGH-MASS ATLAS 2D DY INCONSISTENT SINGLE DATASET INCONSISTENCY
- "JETS": GLOBAL FIT, ALL IN-SAMPLE SINGLE-INCLUSIVE JETS INCONSISTENT INCONSISTENCY OF DATA WITH HIGH-IMPACT ON A PDF

THE NORMALIZED BIAS

DIS: BULK INCONSISTENCY

BIAS VS INCONSISTENCY (FULL DATASET)

• $\lambda\gtrsim 0.3$ \Rightarrow model partly corrects inconsistency

• $\lambda = 0$ nonlinear growth: model poor (uncertainties underestimated)

THE NORMALIZED BIAS

DY: SINGLE DATASET INCONSISTENCY

BIAS VS INCONSISTENCY (FULL DATASET)

• $\lambda \gtrsim 0.2 \Rightarrow$ model corrects inconsistency

• $\lambda = 0$ leap: model inaccurate (uncertainties somewhat underestimated)

THE NORMALIZED BIAS

JETS: HIGH-IMPACT INCONSISTENCY

BIAS VS INCONSISTENCY (FULL DATASET)

• $\lambda \gtrsim 0.3 \Rightarrow$ model fully corrects inconsistency

• $\lambda = 0$ phase transition: Model Fails (uncertainties completely wrong)

DATA vs. PREDICTION I

INCONSISTENT VS. CONSISTENT PDF PREDICTIONS FOR INCONSISTENT DATASET

DIS: BULK INCONSISTENCY

$\lambda = 0.4$: model corrects

JETS: HIGH-IMPACT INCONSISTENCY

- $\lambda = 0.4$: model corrects, prediction does not move
- $\lambda = 0$: MODEL FAILS, PREDICTION OFF WITH UNCHANGED UNCERTAINTY

DATA vs. PREDICTION II

INCONSISTENT VS. CONSISTENT PDF PREDICTIONS FOR INCONSISTENT DATASET

DY: SINGLE DATASET INCONSISTENCY

- PREDICTION DOES NOT MOVE
- $\lambda = 0.4$: MODEL CORRECTS, UNCERTAINTY UNCHANGED

DESPITE SMALLER DATA UNCERTAINTY

• $\lambda = 0$: MODEL FAILS, UNCERTAINTY SHRINKS DRIVEN BY SMALLER DATA UNCERTAINTY

FLAGGING INCONSISTENCIES VALIDATING THE NNPDF4.0 DATASET SELECTION METHOD

- LARGE $R_b \Rightarrow$ LARGE χ_p^2 OF INCONSISTENT DATASET
- χ^2_p of consistent datasets sensitive to same PDFs also large

EXAMPLE:

INCONSISTENT ATLAS JET DATA WITH IN-SAMPLE CMS JET DATA:

•
$$n_{\sigma} = \frac{\chi_p^2 - 1}{\sqrt{N_{dat}/2}}$$
: ATLAS TRUE POSITIVE: $n_{\sigma} = 4.8$; CMS FALSE POSITIVE: $n_{\sigma} = 2.7$

REPEAT FIT WITH LARGE WEIGHT TO PUTATIVE INCONSISTENT DATASETS

- WEIGHTED FIT:
 - ATLAS INCONSISTENT TRUE POSITIVE: $n_{\sigma} = 2.8$ remains inconsistent
 - CMS consistent false positive: $n_{\sigma} = 0.7$ becomes consistent

CONCLUSIONS

- NNPDF4.0 PDF uncertainties somewhat overestimated (~ 10%)
- ML MODEL CORRECTS FOR INCONSISTENCY EXCEPT IN EXTREME CASES
- EXTREME INCONSISTENCY SIGNALED BY LARGE χ^2 ,

DETECTABLE BY WEIGHTED FIT