News from LHCb Including EW Perspective

Nate Grieser, on behalf of the collaboration

University of Cincinnati

2024 PDF4LHC Meeting

02-12-2024

Grieser (Cincinnati)

PDF4LHC - LHCb

Introduction to LHCb

Weak Mixing Angle Measurement

3 Looking to the Future

4 Conclusions

Overview

 \rightarrow LHCb geometry provides a unique coverage at the LHC to provide complimentary physics results useful to the PDF community!

Today we will consider two recent topics:

- In Effective Weak Mixing Angle Measurement at 13 TeV
- Single-jet Cross Section Measurement at 5.36 TeV

LHCb Detector Overview

JINST 3 (2008) S08005

\rightarrow LHCb Strengths of Design:

- Long tracking distances for improved flavour physics
- Ring-Imaging Cherenkov (RICH) detectors for particle identification (PID)

 Forward design allows for LHC-unique coverage of lowand high-x partons

PRD 93, 074008 (2016)

Grieser (Cincinnati)

3/12

3/12

2

Measurement of the Effective Leptonic Weak Mixing Angle

arXiv:2410.02502

Significant probe of EW theory; relation of U(1) and SU(2) gauge couplings

$$\sin heta_W = \left(1 - rac{m_W^2}{m_Z^2}
ight)$$

 $q-\bar{q}$ differences at high-x and low-x has significant sculpting of Z relations to initial-state partons

Fraction of events with Z in line with

initial-state quark

PDF4LHC - LHCb

Measurement of the Effective Leptonic Weak Mixing Angle

arXiv:2410.02502

Separate events at large and small $\cos\theta^*$ to increase sensitivity

 $rac{d\sigma}{dcos heta^*} \propto 1 + cos^2 heta^* + rac{8}{3} A_{FB} cos heta^*$

Bin the measurement of A_{FB} in $\Delta \eta$ of the muons shows significant sensitivity to $\sin \theta_W \downarrow$

↑ Can use single, large window mass bin due to very pure signal selection

 $66 {\rm GeV} \leq M_Z \leq 116 {\rm GeV}$

Measurement of the Effective Leptonic Weak Mixing Angle

arXiv:2410.02502

Results: $\sin\theta_{\rm eff}^{\ell} = 0.23152 \pm 0.00044$ (stat.) ± 0.00005 (syst.) ± 0.00022 (theory)

Treatment of PDFs in $\sin \theta_{\mathrm{eff}}^{\ell}$ Measurement

arXiv:2410.02502

 \rightarrow Forward region has smallest PDF uncertainties before profiling due to lower dilution between partonlevel and particle-level in this region

How We Treat Them:

- Find results for each PDF set considered, with uncertainties evaluated following the prescription given by the PDF fitting group
 → No Profiling
- PDF uncertainties evaluated through by reweighting based on x and Q^2
 - \rightarrow Extremely quick to make cross-check and adaptations to other PDFs
- No favoured PDF in report of central results
 - \rightarrow Arithmetic average taken for central value and PDF uncertainty
- \rightarrow Current results do not require profiling, but next iteration will have to consider

Treatment of PDFs in $\sin \theta_{\mathrm{eff}}^{\ell}$ Measurement

PDF set	$\sin^2 heta_{ ext{eff}}^\ell$	Shift	Fit $\chi^2/ndof$
NNPDF31_nlo_as0118	0.23133	_	13.1/6
CT18NLO	0.23139	0.00006	19.8/6
$MSHT20nlo_{as}118$	0.23119	-0.00015	10.8/6
CT18ZNLO	0.23126	-0.00007	17.1/6
NNPDF40_nlo_as_01180	0.23120	-0.00014	9.4/6

 \rightarrow Cross-Check of measurement with a variety of PDFs shows consistency Note: Not a full re-analysis, difference in χ^2 expected

Introduction to LHCb

Weak Mixing Angle Measurement

3 Looking to the Future

4 Conclusions

Probing Very High x With $\sqrt{s} = 5.36$ TeV pp Collisions

Plot Courtesy T. Boettcher

 \rightarrow Inclusive single-jet cross sections show significant differences in gluon PDFs

Grieser (Cincinnati)

Probing Very High x With $\sqrt{s} = 5.36$ TeV pp Collisions

→ Single jet cross section measurement using *pp* reference run will study the differences in PDFs experimentally Data is already taken!

- Utilize an inclusive jet trigger that alleviates bias of previous jet collections due to HLT1 being primarily heavy-flavour focused
- $\sqrt{s} = 5.36$ TeV pp delivered ≥ 200 fb $^{-1}$ in October 2024
- No prescale necessary on single jet selection as low as $p_{T}^{
 m jet}=30~{
 m GeV}$

 \rightarrow Be on the lookout for results in the near future!

Introduction to LHCb

Weak Mixing Angle Measurement

3 Looking to the Future

4 Conclusions

Conclusions and Outlook

 \rightarrow LHCb geometry provides a unique coverage at the LHC to provide complimentary physics results useful to the PDF community!

- A plethora of EW measurements continue to come out of Run 2 data
 - $\bullet\,$ To-date, no PDF profiling is necessary $\rightarrow\,$ May change in Run 3
- Jet measurements targeting high-x space to come in near future
- Other interesting measurements are planned in Run 2 that can contribute to PDF ecosystem:
 - **Electro-Weak:** Z mass, WW, W helicity + XSec, ...
 - **2** Jet-focused: Single jet XSec, Dijet XSec, W + jets, W + charm, ...

Anything else?

Backup

BACKUP