

A Decade of Collectivity in Small Systems

Jan Fiete Grosse-Oetringhaus (CERN)

Light lons at the LHC

11.11.2024

"And early on, still with proton beams, we tripped over another surprise – the first, and arguably still the most unexpected, LHC discovery. A feeble, but distinct, very long-range correlation between particles, never before seen in any elementary collisions [...]. (*Jurgen Schukraft, <u>Recollections</u>, 18.10.24*)

"We have immediately set-up an independent analysis (control group) and organized a full set of tests and crosschecks to kill the effect. [...] If we are here today it is because we didn't succeed to kill it." (Guido Tonelli, <u>LHC seminar</u>, 21.10.10)

"This is a subtle effect in a complex environment – careful work is needed to establish physical origin" (Gunther Roland, LHC seminar, 21.10.10)

Collective Phenomena and Small Systems

Strokkur Geyser, Iceland

The emergence of collective phenomena in small systems has shaken the basic paradigms of the high-energy and heavy-ion physics fields

This talk discusses where we stand and what we can learn from it about fundamental QCD

None of the content of this talk was known ...when LHC was proposed, and ...when LHC started

Paradigm 15 Years Ago

Small and large systems governed by totally different physics

Single-process limit Vacuum

Thermal limit Dense system

which is directly reflected in experimental programs at that time

1.1.3 ALICE experimental programme

 $\mathbf{p} \circ \rightarrow \leftarrow \circ \mathbf{p}$

In general, to establish experimentally the collective properties of the hot and dense matter created in nucleus–nucleus collisions, both systematics-dominated and luminosity-dominated questions have to be answered at LHC. Thus, ALICE aims firstly at accumulating sufficient integrated luminosity in Pb–Pb collisions at $\sqrt{s} = 5.5$ TeV per nucleon pair, to measure rare processes such as jet transverse-energy spectra up to $E_{\rm T} \sim 200$ GeV and the pattern of medium induced modifications of bottomium bound states. However, the interpretation of these experimental data relies considerably on a systematic comparison with the same observables measured in proton–proton and proton–nucleus collisions as well as in collisions of lighter ions. In this way, the phenomena truly indicative of the hot equilibrating matter can be separated from other contributions. ALICE physics performance report, *J.Phys.G* 30 (2004) 1517-1763

First Discovery: The Ridge

Basics: Collective Phenomena

- Two-particle correlations
 - "Probably density" to find second particle

First Discovery: Ridge

CERN

Remarkably, the community was not yet intrigued enough, and the topic went somehow dormant again

Higher statistics version (from 2017):

CMS, PLB

765 (2017) 193

First Discovery: Ridge and Ridges

- Same feature observed in p-Pb collisions
- Second ridge discovered (with subtraction procedure, see later)

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

Higher-Orders Collectivity

How many particles contribute to the phenomena?

Identified-Particle Collectivity

- Light particles (π, K, p, φ, Λ) group by quark content (baryon vs. meson)
 - Large systems: shows partonic degrees of freedom
 - Also observed in high-multiplicity p-Pb and pp collisions
- Charm quarks show collective behaviour
 - Large systems: they thermalize in the medium
 - Also observed for D and J/ ψ in high-multiplicity p-Pb coll.
- Bottom quark flow in large systems
 - Large systems: affected by the medium (except Y)
 - Hint in high-multiplicity p-Pb collisions

Second Discovery: Strangeness Enhancement

Strangeness Enhancement

- Strange baryon production (K, Λ, Ξ, Ω) increases faster than multiplicity
- Smooth across collision system from pp to Pb-Pb

Historically, consequence of energetically cheaper production of $s\overline{s}$ in Quark-Gluon Plasma (compared to $K\overline{K}$ in vacuum)

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

Strangeness Enhancement

- Strange baryon production (K, Λ , Ξ , Ω) increases faster than multiplicity
- Smooth across collision system from pp to Pb-Pb ullet

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

Strange/π vs. dN_{ch}/dη

(Strange = K, Λ , Ξ , Ω)

Nature

Phys

 $\overline{\omega}$

(2017)

 $2K_{o}^{0}$

Other large system phenomena

Energy Loss

- Sizable multi-particle collective phenomena involving most species
 - If observed phenomena are due to final-state interactions, partons should lose energy
- Clear sign of energy loss in Pb-Pb collisions $R_{AA} = \frac{dN_{AA}/dp_T}{\langle N_{coll} \rangle dN_{pp}/dp_T} \qquad \begin{bmatrix} R_{AA} = 1 \rightarrow \text{no modification} \\ R_{AA} = 1 \rightarrow \text{medium effects} \end{bmatrix}$
- No sign of suppression in p-Pb collisions for hadrons, D and B mesons

Absence of Energy Loss

- No evidence of parton energy loss in p-Pb collisions
 - However, present in all Pb-Pb collisions
- When does energy loss turn on?
- Peripheral Pb-Pb has same size as average p-Pb
 - $R_{AA} \sim 0.8$ (peripheral Pb-Pb) vs. $R_{pA} \sim 1$ (p-Pb)
- Measurement in 80-100% clarified inconsistency
 - Reproduced by simple superposition model HG-PYTHIA (Loizides, Morsch, PLB773 (2017) 408)
 - Peripheral Pb-Pb: average NN impact parameter larger than in pp
- Negligible energy loss already in peripheral Pb-Pb coll.
 - Therefore, expectation in R_{pA} also negligible

JHEP 04 (2017) 039, JHEP 1811 (2018) 013

Search for Energy Loss

- Single-particle observables ("R_{pA}") not sensitive
- Coincidence measurements \rightarrow h-jet, jet- γ , jet-Z correlations

ALICE

h-jet

pp 10-12 <N_>

Very High Multiplicity Jets

- Particles in very dense jets
 - $p_{\rm T} > 550 \text{ GeV/c} < N_{\rm ch} > = 101$
- Rotation of jet "into" beam axis
- Ridge-like contribution

Can a single parton hadronization develop its own dense environment or is it a fundamental QCD ("not QGP") property?

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

Table 1. Summary of observables or effects in Pb–Pb, Xe–Xe and Au–Au collisions, as well as in high multiplicity p–Pb, a–A and pp collisions. References to key measurements are given. See text for details. Table adapted from Ref. 99 and extended by publications of the last 5 years.

	Observable or effect	Pb–Pb, Xe–Xe, Au–Au	p–Pb, a–A (high N)	pp (high N)	Refs.
	Near-side ridge yields	yes	yes	yes	33-36,74,76,77,79,79,100
	Azimuthal anisotropy	$v_1 - v_9$	$v_1 - v_5$	$v_2 - v_4$	34-36.46.73-89.101.102
-	Weak η dependence	yes	yes	yes	82,90-98
-	Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2	78,81,83,87,103-110
-	Higher-order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6$ "	$83\!84\!88\!96\!109\!111\!+\!123$
	(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		
-	Symmetric cumulants (SC)	up to $(5,3)$	only $(4, 2), (3, 2)$	only $(4, 2), (3, 2)$	86,88,124-130
-	Non-linear flow modes	up to v_7	not measured	not measured	89,131,132
-	Factorization breaking	$n = 2-4, \{2\}, \{4\}$	$n = 2, 3, \{2\}$	not measured	77,85,133+137
-	Event-by-event $v_{\rm n}$ distributions	$v_2 - v_4$	not measured	not measured	138 - 140
-	$Flow-p_T$ correlation	up to v_4	v_2	not measured	141,142
-	Directed flow (from spectators)	yes	no	no	143
	Charge-dependent correlations	yes	yes	yes	144 + 150
-	Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes	52,151+161
-	Intermediate $p_{\rm T}$ ("recombination")	yes	yes	yes	153,156,160,162-166
-	Particle ratios	GC level	GC level	GC level	153,154,157,158,167,168
	Statistical model	$\gamma_s^{\text{GC}} = 1$	$\gamma_s^{\rm GC} \approx 1$	$\gamma_s^{\rm C} < 1$	52,161,169+171
-	HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N}))$	$R_{\rm out}/R_{\rm side} \approx 1$	$R_{\rm out}/R_{ m side} \lesssim 1$	$R_{\rm out}/R_{ m side} \lesssim 1$	172-180
-	Direct photons at low $p_{\rm T}$	yes	not measured	not observed	181 + 183
-	$v_{\rm n}$ in events with Z, jets	not measured	up to v_3	v_2	184-186
-	Jet constituent $v_{\rm n}$	v ₂	v_2	v_2 in jet frame	187,188
-	Jet quenching through R_{AA}	yes	not observed	not observed	65,67,189+204
-	through dijet asymmetry	yes	not observed	not observed	205 - 212
Most observables studi	rough correlations	yes (Z–jet, γ –jet, h–jet)	not obs. (h–jet, jet–h)	not measured	204,213 222
	rough high $p_{\rm T} v_{\rm n}$ and jet- $v_{\rm n}$	yes	yes	not measured	184,223-225
in AA, nign muit. pA and	app flavour anisotropy	up to v_3 (c), up to v_2 (b)	up to v_2	up to v_2	108,226-248
	Quarkonia production	suppressed	suppressed	not measured	232 249 - 284

arXiv:2407.07484

Even Smaller Systems...

Basics: Subtraction Procedures

worked well as long as the statistical uncertainties were large...

PLB719 (2013) 29

Subtraction Procedures

- Extracting v₂ coefficient requires subtraction procedure $\Delta Y(\Delta \varphi) = Y_N a Y_M$
- Accuracy of procedures depends on $v_2(N_{ch})$. Let's assume: $v_{n,M}^2 = \alpha_N v_{n,N}^2$
- Low-multiplicity subtraction

 $\Delta Y(\Delta \varphi) = G' + N \sum_{n} 2v_n^2 \cos(n\Delta \varphi)$

− Exact for
$$v_2 \rightarrow 0$$
 for M $\rightarrow 0$ ($\alpha_N = 0$)

• Template fit method

$$\Delta Y(\Delta \varphi) = G\left(1 + \sum_{n} 2v_n^2 \cos(n\Delta \varphi)\right)$$

- Exact for v_2 independent of M for small M $(\alpha_N = 1)$

Experimental result procedure dependent – in particular at low multiplicity

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

Low Multiplicity

Does the phenomena switch off?

Low multiplicity dominated by jets, resonances
 → Ridge "too small to stick out" (~negligible in high-multiplicity pp or p-Pb)

Experimental result procedure dependent – in particular at low multiplicity

Low Multiplicity and e⁺e⁻ and ep

- Low-multiplicity pp collisions studied on near side
 - Near-side ridge found for N_{ch} as low as minimum bias
- e⁺e⁻ (ALEPH) and ep (HERA) data re-analyzed
 - Thrust axis analysis on archived data
 - No ridge observed (minor hint at high multiplicity, see <u>backup</u>)
- 5σ difference between pp and e⁺e⁻ at the same multiplicity
 - Comparison as a function of multiplicity challenging (see <u>backup</u>)

Ridge in γ -p and γ -Pb Collisions

- Ultra-peripheral Pb-Pb collisions give access to γ-p and γ-Pb collisions (electromagnetic cloud)
 - Interpreted as probe of the initial state
- Extremely small signal
 - Subtraction methods needed
- γ-p
 - No ridge structures (v₂ explained by "standard" MCs), (PLB,844:137905,2023)
- γ-Pb
 - $-v_2$ finite
 - Magnitude similar to pp, about 50% smaller than p-Pb

Collectivity with "large" objects

• About 10 ultracold Lithium atoms in elliptic trap

- Shape inversion + buildup of momentum anisotropy
- Above 6 atoms, hydrodynamic behavior observed

Other Ion Species

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

Quark-Gluon droplets engineered

What is the relation to the overlap shape of the initial state?

- Different picture emerges
 - PHENIX: v₃ larger in ³He-Au wrt p-Au, d-Au (Nature Physics 15, 214 (2019))
 - STAR: v₃ in p-Au, d-Au, ³He-Au similar (PRL130(24):242301, 2023)
- Only part of differences can be attributed to method differences (e.g. PRC107(1):014904, 2023)
 - PHENIX: event-plane method with detectors at -3.9 < η < -3.1 and $|\eta|$ < 0.35
 - STAR: template method with both particles within $|\eta|$ < 0.9 and an η -gap of 1 unit

Very important to resolve this experimental discrepancy!

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

Nature of $f_0(980)$ and $f_1(1285)$

- Quark content of f states not known (number, content)
- Yield measurement of $f_1(1285) \rightarrow K^0_{S}K^{\pm}\pi^{\pm}$
 - Comparison to statistical hadronization model assuming different strangeness content
 - \rightarrow No strangeness content consistent with data
- v_2 measurement of $f_0(980) \rightarrow \pi\pi$
 - Constituent quark scaling ("NCQ scaling")
 - Amount of collectivity proportional to number of quarks
 - Leads to universal curve v_2/n_q vs. KE_T/n_q
 - \rightarrow 2 quark hypothesis compatible with this model

*assuming the concepts are valid in small systems

Explanations

Explanations

Hydrodynamic evolution

Kinetic theory / transport models

Initial-momentum correlations

Many scatterings <---> Few scatterings <---> Initial conditions

(Perfect) fluid dynamics ↔ free streaming limit

Explanations: Hydrodynamics

Hydrodynamic evolution

Many scatterings

- Is it "simply" as in large A-A systems?
- Description of large system needs
 - Rapid equilibration
 ... rapid enough for pp?
 - Fluid dynamics
 ... what is the smallest droplet?
 - Minimal dissipative properties
 ... sufficient collectivity generated in small systems?
- Today's models describe most of the data but need more ingredients than just fluid dynamics

Kinetic theory / transport models

Few scatterings

Explanations: Kinetic Theory

- Kinetic theory can be applied to arbitrary small systems
- Can interpolate smoothly between free-streaming limit and fluid dynamics in dense systems
- Formulation requires scale separation between wave packet size and mean free path
 - Not the case for α_{S} ~ 0.3
 - In principle one is beyond valid regime
- Yet, MC implementation AMPT reproduces $v_{\rm n}$ with small number of interactions

Explanations: Initial State

Initial-momentum correlations

Initial conditions

- (Sub)nucleonic fluctuations in the incoming projectiles
- Saturation at low x

10 500 400 300 200 100 -10 -10 -5 0 5 0 5 0 5 10 x [fm]

τ=0.4 fm/c

- Quantum interference between emissions from different sources
- Today, it is mostly excluded that a large fraction of the observed effects are due to initial-state momentum correlations (see e.g. PRL121 (2018) 5, 052301)

Phenomenology

- Hadronization beyond incoherent superposition and leading color
 - Color reconnections for $< p_T >$
 - Junctions for baryon production like in PYTHIA
- Collective-like phenomena
 - Colour ropes like in PYTHIA/DIPSY
- Combining vacuum hadronization and hydrodynamics
 - Core-corona models like in EPOS
 - Corona: vacuum-like
 - Core: hydrodynamic evolution

Coalescence and Statistical Hadronization

- Coalescence in filled phase space of quarks and gluons
 - Partons close in momentum and position space coalesce to hadrons
 - Probability is p_T dependent
 - Can be successfully applied to large objects
 - Nuclei have small binding energy and are formed late
- Statistical hadronization: Relativistic ideal quantum gas of hadrons in thermal and chemical equilibrium
 - 3 free parameters: V, T, μ_{B}
 - Central Pb-Pb at LHC
 - T = 156 ± 2 MeV
 - $\mu_B = 0.7 \pm 3.8 \text{ MeV}$
 - V ~ 5000 ± 500 fm³

of magnitude

orders

ດ

CERN

Big Picture

- Both hydrodynamic and non-fluid dynamic d.o.f. relevant at most (all?) sizes
- Influence on observables is size dependent
 - Experimental handle (species) to dial the relative contribution \rightarrow tool to study QGP d.o.f.

D 1 1 1 0

More about small systems...

Field shifted paradigm due to small system discoveries
 – Enormous experimental and theoretical work in the last 10+ years

. . . .

References to key measurements are given	a. See text for details. Table a	u-Au collisions, as well as adapted from Ref. 99 and e	extended by publicatio	p-Pb, a-A and pp collisions. ns of the last 5 years.
Observable or effect	Pb–Pb, Xe–Xe, Au–Au	p–Pb, a–A (high N)	pp (high N)	Refs.
Near-side ridge yields	yes	yes	yes	83-86,74,76,77,79,79,100
Azimuthal anisotropy	$v_1 - v_9$	$v_1 - v_5$	$v_2 - v_4$	84-86,46,73-89,101,102
Weak η dependence	yes	yes	yes	82,901-981
Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2	78,81,83,87,103-110
Higher-order cumulants	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6 \approx 8 \approx LYZ$ "	" $4 \approx 6$ "	83,84,88,96,109,111-123
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		
Symmetric cumulants (SC)	up to $(5,3)$	only $(4, 2), (3, 2)$	only $(4, 2), (3, 2)$	86,88,124-130
Non-linear flow modes	up to v_7	not measured	not measured	89,131,132
Factorization breaking	$n=2-4,\{2\},\{4\}$	$n = 2, 3, \{2\}$	not measured	77,85,133-137
Event-by-event v_n distributions	$v_2 - v_4$	not measured	not measured	138-140
$Flow-p_T$ correlation	up to v_4	v_2	not measured	41,42
Directed flow (from spectators)	yes	no	no	43
Charge-dependent correlations	yes	yes	yes	44 150
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes	52,151 1 <u>61</u>
Intermediate $p_{\rm T}$ ("recombination")	yes	yes	yes	153,156,160,162-166
Particle ratios	GC level	GC level	GC level	153,154,157,158,167,168
Statistical model	$\gamma^{ m GC}_s=1$	$\gamma_s^{\text{GC}} \approx 1$	$\gamma_s^{\rm C} < 1$	52,161,169-171
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N}))$	$R_{ m out}/R_{ m side}pprox 1$	$R_{\rm out}/R_{ m side} \lesssim 1$	$R_{ m out}/R_{ m side} \lesssim 1$	172 180
Direct photons at low $p_{\rm T}$	yes	not measured	not observed	181-183
$v_{\rm n}$ in events with Z, jets	not measured	up to v_3	v_2	184-1861
Jet constituent v_{n}	v_2	v_2	v_2 in jet frame	187,188
Jet quenching through R_{AA}	yes	not observed	not observed	65,67,189-204
through dijet asymmetry	yes	not observed	not observed	205 212
through correlations	${ m yes}~(\overline{Z}{ m -jet},~\gamma{ m -jet},~{ m h}{ m -jet})$	not obs. (h–jet, jet–h)	not measured	204,2131 222
through high $p_{\rm T}~v_{\rm n}$ and jet- $v_{\rm n}$	yes	yes	not measured	184,2231 225
Heavy flavour anisotropy	up to v_3 (c), up to v_2 (b)	up to v_2	up to v_2	108,226-248
Quarkonia production	suppressed	suppressed	not measured	232,249 284

1 4 4

arxiv > hep-ex > arXiv:2407.07484

High Energy Physics - Experiment

[Submitted on 10 Jul 2024]

A Decade of Collectivity in Small Systems

Jan Fiete Grosse-Oetringhaus, Urs Achim Wiedemann

Signatures of collectivity, including azimuthally anisotropic and radial flow as well as characteristic hadrochemical dependencies, have been observed since long in (ultra)relativistic nucleus-nucleus collisions. They underpin the interpretation of these collision systems in terms of QGP formation and close-to-perfect fluidity. Remarkably, however, essentially all these signatures of collectivity have been identified within the last decade in collision systems as small as pp and p-Pb, where collective phenomena had been assumed to be absent traditionally. Precursor phenomena may have been found even in ep and e^+e^- collisions. This article provides a complete review of all data on small system collectivity. It reviews model simulations of these data where available. However, in the absence of a phenomenologically fully satisfactory description of collectivity across all system sizes, we focus in particular on the theoretical basis of all dynamical frameworks of collectivity invoked in heavy ion collisions, and their expected scaling with system size. Our discussion clarifies to what extent all dynamical explanations are challenged by the available data.

Comments: Invited article submitted for consideration in World Scientific Annual Review of Particle Physics

Read more in: arXiv:2407.07484

Searc

Summary

- Small system observations challenge two paradigms at once
 - Smallest system in which heavy-ion "standard model" remains valid?
 - Can the standard tools for pp physics remain standard?
- Traditional HEP and traditional HI studies grow together
 - Tremendous experimental and theoretical progress in last 10+ years
 - The underlying QCD *is* the same theory
- New insights expected from O-O, p-O, p-Pb and p-X (?) runs
- More about the last decade in our review: Wiedemann, JFGO: arXiv:2407.07484
- Let's discuss the next decade at this workshop

Thank you for your attention!

e⁺e⁻ Highest Bin

Conversion of ALEPH multiplicity

- Estimate the limits of uncertainty on the conversion of the multiplicity
- Target: multiplicity defined by accepted particles within $|\eta| < 1.0$, $p_{\rm T} > 0.2 \, {
 m GeV}/c$
- Multiplicity conversion between different systems and experiments is done using PYTHIA
 - 1 Simulate pp at $\sqrt{s} = 13 \,\mathrm{TeV}$ in both experimental acceptances. Multiplicity ratio to obtain α_{A}
 - Simulate e^+e^- at $\sqrt{s} = 91 \, GeV$ in both experimental acceptances. Multiplicity ratio to obtain α_B

Method	Experiment	Corr. factor $\alpha_{A/B}$	
PYTHIA	ALEPH pp 13 TeV	0.57 (A)	
	ALEPH e^+e^- 91 GeV	0.78 (B)	
Flat $\mathrm{d} \textit{N}/\mathrm{d} \eta$	ALEPH	0.63	

Experiment	η_{max}	$p_{\mathrm{T,min}}$	\sqrt{s}
ALICE pp	1.0	0.2	13 TeV
ALEPH e^+e^-	1.738	0.2	91 GeV

Long-range correlations in pp collisions

18.6.2024

A Decade of Collectivity in Small Systems - Jan Fiete Grosse-Oetringhaus

