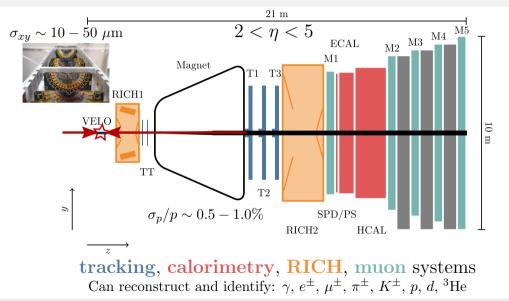
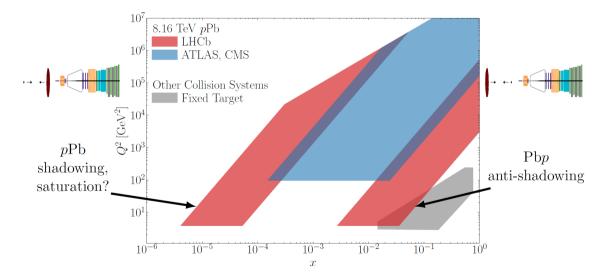
LHCb Highlights

Tom Boettcher

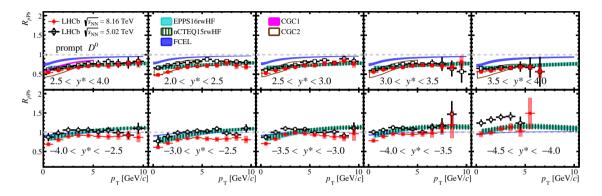
University of Cincinnati, Indiana University

Light ion collisions at the LHC November 11, 2024

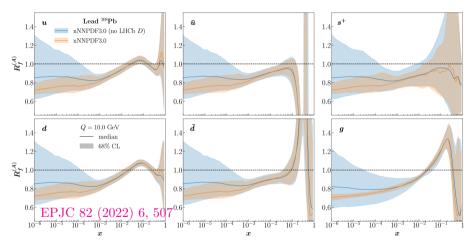



What happens when we vary A?

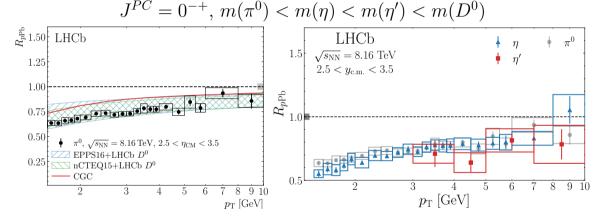
- **The gluon density changes.** Varying *A* lets us probe different gluon densities without changing kinematics.
- The energy density and final-state multiplicity changes. Varying A can help us find the onset of QGP production.
- The geometry of the collision changes. Changing the nuclear geometry could reveal links between the initial state of high-energy nuclear collisions and collective flow.


The LHCb detector (Int. J. Mod. Phys. A 30, 1530022 (2015))

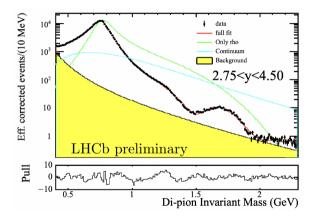
LHCb kinematic coverage



Open charm production at LHCb (PRL 131 (2023) 102301)


LHCb open charm production data has had a major impact on nPDF uncertainties, although nPDF predictions fail to describe all LHCb D^0 production data.

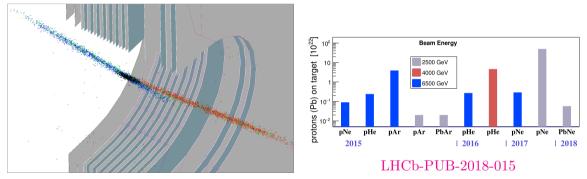
Open charm production at LHCb (PRL 131 (2023) 102301)



LHCb open charm production data has had a major impact on nPDF uncertainties, although nPDF predictions fail to describe all LHCb D^0 production data.

π^0 , η , and η' production (PRL 131 (2023) 042302, PRC 109 (2024), 024907)

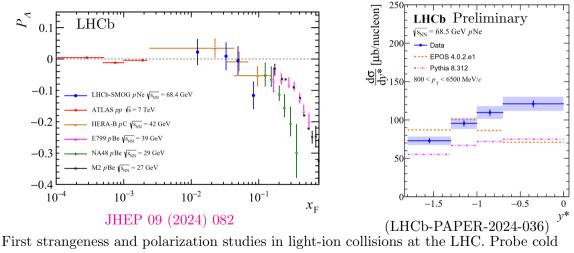
Light hadrons in ultraperipheral collisions (LHCb-PAPER-2024-042, in preparation)



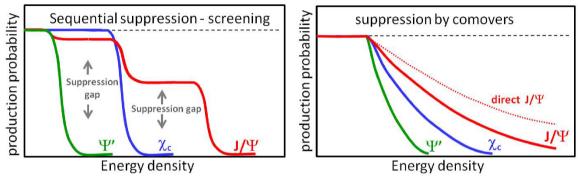
LHCb is uniquely well-suited to reconstruct light mesons, such as the ρ and ϕ , in ultraperipheral nuclear collisions.

Prospects for low-x physics with light ions at LHCb

- \blacksquare LHCb can probe the gluon nPDF at low x with forward inclusive hadron production measurements.
- Constraining low-x nPDFs at various A (and gluon densities) will be important for finding nonlinear parton density evolution.
- Expected integrated luminosities for OO collisions in 2025 are small, so light probes like the ρ and φ at LHCb will be important for studying light ion UPCs.

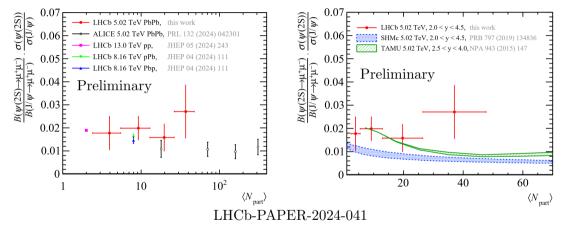

Fixed-target physics at LHCb with SMOG

CERN-THESIS-2013-301

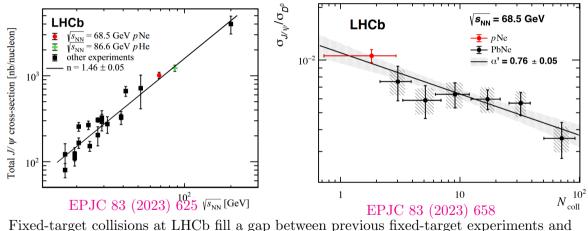

The System for Measuring Overlap with Gas was designed for precise luminosity measurements, but has since been used to study fixed-target collisions at LHCb.

Strangeness production in fixed-target collisions

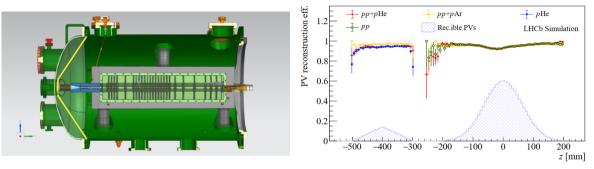
nuclear matter effects and transverse momentum dependent fragmentation functions.


Sequential charmonium suppression and QGP

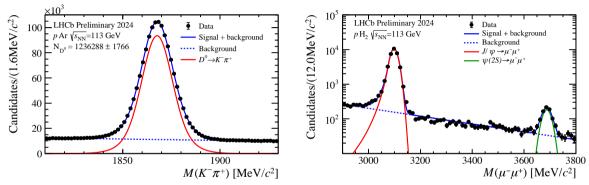
CERN-SPSC-2012-031


The pattern of charmonium suppression vs energy density can reveal the underlying physical mechanism. Measuring charmonium production with various collision systems lets us probe a wide range of energy densities.

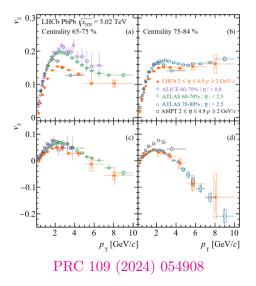
Charmonium from small to large systems at LHCb


New measurements of charmonium production ratios at LHCb can help disentangle nuclear effects such as statistical hadronization and regeneration.

Open and hidden charm production in fixed-target collisions


RHIC. No evidence for anomalous J/ψ suppression in PbNe collisions at this energy.

The SMOG2 system (LHCb-DP-2024-002)


- Consists of a dedicated gas cell upstream of the the VELO.
- Up to two orders of magnitude increase in gas pressure vs the original system.
- Allows for the injection of non-noble gases (e.g. hydrogen and deuterium).
- Clean separation of beam-beam and beam-gas allows LHCb to collect collider and fixed-target data simultaneously.

Heavy flavor with SMOG2 (LHCb-FIGURE-2024-023)

- \blacksquare Collected large samples of $p{\rm H}_2,\,p{\rm D}_2,\,p{\rm He},\,p{\rm Ne},\,{\rm and}\,\,p{\rm Ar}$ in 2024
- Plan to collect large PbNe and PbAr samples during the PbPb run this year

Collectivity studies with SMOG2

- LHCb recently performed the first measurement of flow harmonics of charged particles at forward rapidity at the LHC.
- SMOG2 will allow us to study the impact of nuclear geometry on flow measurements by studying collisions between Pb and light nuclei.
- See the talk by Giacomo Graziani later this week!

Final thoughts

- The LHCb detector has unique capabilities that will allow it to take particular advantage of light-ion collisions.
- LHCb has an ongoing light-ion physics program via its fixed-target system that has greatly expanded with new data in 2024.
- Light-ion beams would allow us to study a large variety of collisions systems in both fixed-target and collider modes.

Thank you!