The unexpected uses of a bowling pin Exploiting ²⁰Ne isotopes for precision characterizations of collectivity in small systems

Govert Nijs

November 11, 2024

Based on:

 Giacalone, Bally, GN, Shen, Duguet, Ebran, Elhatisari, Frosini, Lähde, Lee, Lu, Ma, Meißner, Noronha-Hostler, Plumberg, Rodríguez, Roth, van der Schee, Somà, 2402.05995

One fluid to rule them all?

- Anisotropic flow is present in a great range of system sizes:
 - PbPb,
 - High multiplicity pPb,
 - High multiplicity pp,
 - . . .
- Is this a sign of hydrodynamics?
 - Hydrodynamical simulations seem to work reasonably well.
 - But can a system that small really behave hydrodynamically?
 - Initial state geometry is poorly understood.

<ロト < 同ト < ヨト < ヨト

 We need a precision test of hydrodynamics in small systems.

Recap: why do we believe PbPb is hydrodynamic?

- Not just the presence of $v_n\{k\}$.
- We understand where the $v_n\{k\}$ come from!
 - Hydrodynamics converts initial state anisotropic geometry into final state momentum anisotropy.
 - We understand very well what the initial geometry looks like!
- For *p*Pb this is not the case.
 - There is $v_n\{k\}$ measured.
 - But we do not understand the initial geometry.

<ロト < 同ト < ヨト < ヨト

 No clear interpretation of experimental results.

[ALICE, 1602.01119]

The unexpected uses of a bowling pin

0 collisions

The nuclear bowling pin 000 Conclusion O

Posing a precise question

- Can we describe PbPb and a small system in a hydrodynamical model with the same settings?
 - Hydro model used should describe a wide range of PbPb observables.
- Can we find a quantity to predict which does not suffer from huge theoretical uncertainties? Wishlist:
 - Initial geometry under control.
 - Small sensitivity to proton substructure.
 - No longitudinal structure issues.
 - Quantifiable and small theory uncertainty.

・ロト ・同ト ・ヨト ・ヨ

[ALICE, 1903.01790]

Can ¹⁶O¹⁶O collisions help?

- ¹⁶O¹⁶O collisions are planned at the LHC for 2025.
- Shape of the proton and longitudinal structure are not an issue, but...

イロト イヨト イヨト イヨ

FR

Can ¹⁶O¹⁶O collisions help?

- ¹⁶O¹⁶O collisions are planned at the LHC for 2025.
- Shape of the proton and longitudinal structure are not an issue, but...
- Magnitude of fluctuations in the initial state is poorly constrained.

イロト イヨト イヨト イヨ

Can ¹⁶O¹⁶O collisions help?

- ¹⁶O¹⁶O collisions are planned at the LHC for 2025.
- Shape of the proton and longitudinal structure are not an issue, but...
- Magnitude of fluctuations in the initial state is poorly constrained.
- Different nuclear structure calculations give different answers!
- We have a handle on systematics, but errors are substantial.

The nuclear bowling pin: ²⁰Ne

- We use both the PGCM and NLEFT frameworks for our nuclear structure input.
 - PGCM computes the average deformed densities.
 - NLEFT simulates an effective theory on a lattice.
- ¹⁶O is shaped like an irregular tetrahedron.
- ²⁰Ne is close in size, but has the most extreme shape in the Segrè chart.
- Can we take a ratio between systems to cancel the uncertainties?

Govert Nijs

The nuclear bowling pin: ²⁰Ne

- We use both the PGCM and NLEFT frameworks for our nuclear structure input.
 - PGCM computes the average deformed densities.
 - NLEFT simulates an effective theory on a lattice.
- ¹⁶O is shaped like an irregular tetrahedron.
- ²⁰Ne is close in size, but has the most extreme shape in the Segrè chart.
- Can we take a ratio between systems to cancel the uncertainties?

Govert Nijs

A careful look at uncertainties

- *Trajectum* systematic uncertainty contains contributions from:
 - Uncertainties in parameters.
 - Extrapolation to zero grid spacing.
- PGCM systematic uncertainty contains contributions from:
 - Sampling method: how to convert a density into a configuration.
 - Constraint application: order of operations in the PGCM computation.
- NLEFT systematic uncertainty contains contributions from:
 - Resolution of ambiguities from periodicity of the lattice.
 - Nuclear Hamiltonian parameters.

Govert Nijs

PGCM

 $0.2 \text{ GeV} \le p_T \le 3 \text{ GeV}, 0.5 \le |n| \le 0.8$

<u>Comparing ²⁰Ne to ¹⁶O significantly reduces errors!</u>

- NLEFT and PGCM are consistent within uncertainties.
- Ratio of v_2 {2} reaches percent level precision from 5% to 20% centrality!
- Difference of $\rho(v_2\{2\}^2, \langle p_T \rangle)$ has uncertainty reduced by up to a factor 5
- Larger PGCM uncertainty is mostly due to ambiguity in how to generate configurations from densities.

0 - 1%

NLEFT

PGCM

Comparing ²⁰Ne to ¹⁶O significantly reduces errors!

- NLEFT and PGCM are consistent within uncertainties.
- Ratio of v₂{2} reaches percent level precision from 5% to 20% centrality!
- Difference of \(\rho(\nu_2\{2\}^2, \langle p_T\)\) has uncertainty reduced by up to a factor 5!
- Larger PGCM uncertainty is mostly due to ambiguity in how to generate configurations from densities.

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline 0-1\% & v_2\{2\}_{NeNe}/v_2\{2\}_{OO} & \rho_{2,NeNe}-\rho_{2,OO} \\ \hline \text{NLEFT} & 1.174(8)_{\text{stat.}}(31)_{\text{syst.}}^{\text{Traj.}}(4)_{\text{syst.}} & -0.124(14)_{\text{stat.}}(10)_{\text{syst.}}^{\text{Traj.}}(7)_{\text{syst.}}^{\text{str.}} \\ \hline \text{PGCM} & 1.139(6)_{\text{stat.}}(27)_{\text{syst.}}^{\text{Traj.}}(28)_{\text{syst.}}^{\text{str.}} & -0.124(10)_{\text{stat.}}(10)_{\text{syst.}}^{\text{Traj.}}(29)_{\text{syst.}}^{\text{str.}} & \hline 0.124(10)_{\text{stat.}}(10)_{\text{syst.}}^{\text{traj.}}(29)_{\text{syst.}}^{\text{str.}} \\ \hline \end{array}$$

Comparing ²⁰Ne to ¹⁶O significantly reduces errors!

- NLEFT and PGCM are consistent within uncertainties.
- Ratio of v₂{2} reaches percent level precision from 5% to 20% centrality!
- Difference of \(\rho(\nu_2\{2\}^2, \langle \nu_T\)\) has uncertainty reduced by up to a factor 5!
- Larger PGCM uncertainty is mostly due to ambiguity in how to generate configurations from densities.

()

0-1%	V2{2}NeNe/V2{2}00	$ ho_{2,NeNe}- ho_{2,OO}$	
NLEFT	$1.174(8)_{stat.}(31)_{syst.}^{Traj.}(4)_{syst.}^{str.}$	$-0.124(14)_{stat.}(10)_{syst.}^{Traj.}(7)_{syst.}^{str.}$	CERN
PGCM	1.139(6) _{stat.} (27) ^{<i>Traj.</i>} (28) ^{str.} _{syst.}	$-0.124(10)_{stat.}(10)_{syst.}^{Traj.}(29)_{syst.}^{str.}$	M
		▲日> ▲圖> ▲国> ▲国>	≣ •) Q (

Conclusion

Comparing ²⁰Ne to ¹⁶O significantly reduces errors!

- NLEFT and PGCM are consistent within uncertainties.
- Ratio of v₂{2} reaches percent level precision from 5% to 20% centrality!
- Difference of \(\rho(\nu_2\{2\}^2, \langle p_T\)\) has uncertainty reduced by up to a factor 5!
- Larger PGCM uncertainty is mostly due to ambiguity in how to generate configurations from densities.

0–1%	$v_2\{2\}_{NeNe}/v_2\{2\}_{OO}$	$ ho_{2,NeNe}- ho_{2,OO}$	
NLEFT	$1.174(8)_{stat.}(31)_{syst.}^{Traj.}(4)_{syst.}^{str.}$	$-0.124(14)_{stat.}(10)_{syst.}^{Traj.}(7)_{syst.}^{str.}$	CERN
PGCM	$1.139(6)_{stat.}(27)_{syst.}^{Traj.}(28)_{syst.}^{str.}$	$-0.124(10)_{stat.}(10)_{syst.}^{Traj.}(29)_{syst.}^{str.}$	M
	-	< □ > < 問 > < 直 > < 直 >	≣ • ೧ ⊂

Revisiting the wishlist

$v_n\{k\}$ in	<i>p</i> Pb	00	NeNe/OO
Initial geometry under control	X	1	 Image: A set of the set of the
Small sensitivity to proton substructure		1	 Image: A set of the set of the
No longitudinal decorrelation issues		1	1
Quantifiable theory uncertainty		1	1
Small theory uncertainty	×	\geq 4%	$\geq 1\%$

- Theory has a much better handle on ${}^{16}O{}^{16}O$ compared to pPb.
- Theory uncertainties can be substantially reduced by supplementing ¹⁶O¹⁶O collisions with ²⁰Ne²⁰Ne collisions.
 - v₂{2} ratio can be predicted to 1% precision between 5% and 20% centrality.
 - Different nuclear structure calculations give consistent results.

<ロト < 同ト < ヨト < ヨト