Baseline calculations for oxygen

and neon isotopes

Adam Takacs (Heidelberg)

Aleksas Mazeliauskas

Jannis Gebhard

Based on: 2410.22405

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

G Deutsche Forschungsgemeinschaft

Light ion collisions at the LHC, CERN 2024

Small system puzzle

Adam Takacs (Heidelberg)

Small system puzzle

troubles with quenching in pp, pA, peripheral AA (e.g. small system R_{AA} vs. v_2 puzzle)

<u>Challenges</u>:

- Path lengths are short
- Understanding the geometry
- Soft and hard sector overlaps

Small system puzzle

troubles with quenching in pp, pA, peripheral AA (e.g. small system R_{AA} vs. v_2 puzzle)

<u>Challenges</u>:

- Path lengths are short
- Understanding the geometry
- Soft and hard sector overlaps

light-ion collisions

- $Pb^{208} > Xe^{129} > Ar^{40} > Ne^{20} > O^{16} > p^1$
- geometry is more controlled
- centrality is less of an issue
- OO collisions at LHC and RHIC <u>2103.01939</u>

Detecting energy loss in OO

- 1. No-quenching baseline
- 2. Measure deviation from baseline
- 3. Interpret results (model predictions)

Observables:

- Jet suppression
- Hadron suppression
- Semi-inclusive jet and hadron observables

Master formula of no-quenching baseline

Master formula of no-quenching baseline

$$\sigma_n = \int dx_i dx_j f_i^{h_1}(x_i) f_j^{h_2}(x_j) \otimes \hat{\sigma}_{ij \to n} \otimes \left[1 + \mathcal{O}\left(\frac{\Lambda}{Q}\right) \right]$$

Use state-of-the-art for evaluation:

EPPS16,21, TUJU21, etc.

hadronization, MPI, MC tunes

Adam Takacs (Heidelberg)

1. Jet suppression

10000000

00

(DODDDDDD)

jet

Adam Takacs (Heidelberg)

Light ion collisions at the LHC 2024

Jet spectrum at NLO in pp

- NLO is better with data in pp
- scale uncertainty: LO $20\% \rightarrow \text{NLO } 10\%$
- pdf uncertainty: 5%

Jet suppression in OO

$$R_{AA}^{j}(p_{T}, y) = \frac{1}{A^{2}} \frac{d\sigma_{AA}^{j}/dp_{T}dy}{d\sigma_{pp}^{j}/dp_{T}dy}$$

• Baseline is not 1! (nPDF effects)

nNNPDF30 is in the backup.

Jet suppression in OO

$$R_{AA}^{j}(p_{T}, y) = \frac{1}{A^{2}} \frac{d\sigma_{AA}^{J}/dp_{T} dy}{d\sigma_{pp}^{j}/dp_{T} dy}$$

• Baseline is not 1! (nPDF effects)

Adam Takacs (Heidelberg)

Light ion collisions at the LHC 2024

Jet suppression in OO

$$R_{AA}^{j}(p_{T}, y) = \frac{1}{A^{2}} \frac{d\sigma_{AA}^{j}/dp_{T}dy}{d\sigma_{pp}^{j}/dp_{T}dy}$$

- Baseline is not 1! (nPDF effects)
- nPDF uncertainty is 10%
- difference between nPDF fits
- scale and hadr. uncertainty is small

nNNPDF30 is in the backup.

Adam Takacs (Heidelberg)

Light ion collisions at the LHC 2024

In collab. with D. Pablos.

Adam Takacs (Heidelberg)

Light ion collisions at the LHC 2024

2. Charged hadron suppression

hadron

Charged hadron suppression

$$R_{AA}^{h}(p_{T}, y) = \frac{1}{A^{2}} \frac{d\sigma_{AA}^{h}/dp_{T} dy}{d\sigma_{pp}^{h}/dp_{T} dy}$$

- nPDF + NLO + FF baseline is not 1!
- nPDF uncertainty $\sim 5\%$

Many more works on hadron suppression, see in the references.

Charged hadron suppression

$$R_{AA}^{h}(p_{T}, y) = \frac{1}{A^{2}} \frac{d\sigma_{AA}^{h}/dp_{T} dy}{d\sigma_{pp}^{h}/dp_{T} dy}$$

- nPDF + NLO + FF baseline is not 1!
- nPDF uncertainty $\sim 5\%$
- model predictions vary

Many more works on hadron suppression, see in the references.

Charged hadron suppression

Hadron energy loss in OO: $00 \sqrt{s}_{NN}=7 \text{ TeV } L_{AA}=0.5 \text{ nb}^{-1}$
• Katz, Prado, Noronha-Hostler, Suaide, heavy hadron R_{AA} & v_2 <u>1907.03308</u>
• Huss, Kurkela, Mazeliauskas, Paatelainen, van der Schee, Wiedemann, hadron R _{AA} & v_2 <u>2007.13754</u> , <u>2007.13758</u>
• Zakharov, hadron R_{AA} & $v_2 \ \underline{2105.09350} = 0.90$
• Ke, Vitev, hadron & heavy hadron R_{AA} <u>2204.00634</u> , <u>2312.12580</u> BKK LO (scale)
$ \begin{array}{c} \textbf{M} \textbf{M} \textbf{M} \textbf{M} \textbf{M} \textbf{M} \textbf{M} M$

Adam Takacs (Heidelberg)

Light ion collisions at the LHC 2024

3. Semi-inclusive observables

hadron

jet

Jet triggered hadrons (ATLAS)

• Baseline is not 1!

- Baseline is not 1!
- nPDF err. cancellation

- Baseline is not 1!
- nPDF err. cancellation
- small scale & hadr. uncertainty

- Baseline is not 1!
- nPDF err. cancellation
- small scale & hadr. uncertainty
- small stat err.

Hadron triggered jets (ALICE)

$$p_T^{h} = \frac{1/\sigma_{AA}^{h}}{1/\sigma_{pp}^{h}} \frac{d\sigma_{AA}^{j+h}}{d\sigma_{pp}^{j+h}} \frac{dp_T}{dp_T}$$

- nPDF uncertainties cancel less.
- scale and hadr. unc. is larger
- Hadron trigger is less robust.

Adam Takacs (Heidelberg)

Summary: energy loss in small systems

- 1. hadrons and jets:
 - the baseline is not 1!
 - nPDF uncertainty is dominant
- 2. semi-inclusive observables:
 - baseline is not 1!
 - nPDF uncertainty is reduced
- +1. alternative observable: v_2

More OO energy loss references:

- Katz, Prado, Noronha-Hostler, Suaide, heavy hadron R_{AA} & v₂ <u>1907.03308</u>
- Huss, Kurkela, Mazeliauskas, Paatelainen, van der Schee, Wiedemann, hadron $\rm R_{AA}$ & v_2 2007.13754, 2007.13758
- Zakharov, hadron R_{AA} & v_2 <u>2105.09350</u>
- Brewer, Huss, Mazeliauskas, van der Schee, missing pp reference strategies in OO <u>2108.13434</u>
- Ke, Vitev, hadron & heavy hadron R_{AA} <u>2204.00634</u>, <u>2312.12580</u>
- Xie, Ke, Zhang, Wang, hadron R_{AA} & v_2 <u>2208.14419</u>
- Ogrodnik, Rybář, Spousta, jet R_{AA} extrapolation <u>2407.11234</u>
- Gebhard, Mazeliauskas, Takacs, hadron & jet R_{AA} , I_{AA} <u>2410.22405</u>

Thank you for your attention!

Jet suppression

- The nNNPDF30 uncertainties are largely fluctuating.
- Possible LHAPDF6/MG5 issue.

Without pp reference

$$R_{AA} = \frac{1}{A^2} \frac{d\sigma_{AA}(7 \ TeV)/dp_T}{d\sigma_{pp}(5 \ TeV)/dp_T} \underbrace{\underbrace{\sigma_{AA}}_{\sigma_{pp}}}_{\text{measured}} \underbrace{\underbrace{\sigma_{AA}}_{\sigma_{pp}}}_{\text{scaling}}$$

- 0. Can you measure the spectrum directly?
- 1. Calculate the scaling in pQCD.
- 2. Interpolate the measurements.
- 3. Take ratios of different energies.

Brewer, Huss, Mazeliauskas, van der Schee, <u>2108.13434</u>