Nuclear wave functions for HIC: ab initio PGCM

Benjamin Bally

CERN - 13/11/2024

• Collaboration between low- and high-energy nuclear physics

- Collaboration between low- and high-energy nuclear physics
- Nuclear deformation impacts initial conditions and final state observables Giacalone, PRL 127, 242301 (2021); Bally, PRL 128, 082301 (2022); Jia, PRL 131, 022301 (2023); etc.

- Collaboration between low- and high-energy nuclear physics
- Nuclear deformation impacts initial conditions and final state observables Giacalone, PRL 127, 242301 (2021); Bally, PRL 128, 082301 (2022); Jia, PRL 131, 022301 (2023); etc.
- Use nuclear structure information to better
	- \Diamond determine the initial conditions of ultra-relativistic ion-ion collisions
	- \diamond understand the results of high-energy experiments

- Collaboration between low- and high-energy nuclear physics
- Nuclear deformation impacts initial conditions and final state observables Giacalone, PRL 127, 242301 (2021); Bally, PRL 128, 082301 (2022); Jia, PRL 131, 022301 (2023); etc.
- Use nuclear structure information to better
	- \Diamond determine the initial conditions of ultra-relativistic ion-ion collisions
	- \diamond understand the results of high-energy experiments
- Use high-energy experiments to gain knowledge about atomic nuclei properties

- Collaboration between low- and high-energy nuclear physics
- Nuclear deformation impacts initial conditions and final state observables Giacalone, PRL 127, 242301 (2021); Bally, PRL 128, 082301 (2022); Jia, PRL 131, 022301 (2023); etc.
- Use nuclear structure information to better
	- \Diamond determine the initial conditions of ultra-relativistic ion-ion collisions
	- \diamond understand the results of high-energy experiments
- Use high-energy experiments to gain knowledge about atomic nuclei properties
- Projected Generator Coordinate Method (PGCM) in this context

Previous works on heavy-ion collisions

- **CR2**
- PGCM calculations with a phenomenological interaction: $129Xe$, $197Au$, $208Pb$

Bally, PRL 128, 082301 (2022)

● Lattice QCD calculations of atomic nuclei not yet possible

- Lattice QCD calculations of atomic nuclei not yet possible
- Nucleons and pions as relevant degrees of freedom to describe atomic nuclei

- Lattice QCD calculations of atomic nuclei not yet possible
- Nucleons and pions as relevant degrees of freedom to describe atomic nuclei
- Construct nuclear Hamiltonian through Effective Field Theory (EFT) Hammer, RMP 92, 025004 (2020)
	- ◇ Consistent with symmetries of QCD
	- \Diamond Power counting $\left(\frac{Q}{\Lambda}\right)^n$
	- ◇ Different versions: chiral, pionless, deltafull

3N Eorce

4N Force

2N Force

LO

 ${\cal O}^0$

 Q^2

- Lattice QCD calculations of atomic nuclei not yet possible
- Nucleons and pions as relevant degrees of freedom to describe atomic nuclei
	- 2N Force LO - XI-l Construct nuclear Hamiltonian through Effective ${\cal O}^0$ Field Theory (EFT) \sum_{Q^2} $\left|\sum_{i=1}^{N}$ \mathbb{Q}^2 bittixi Hammer, RMP 92, 025004 (2020) ◇ Consistent with symmetries of QCD $\begin{matrix} \text{NNLO} & \text{NNLO} & \text{NNLO} \\ \text{Q}^3 & \text{NNLO} & \text{NNLO} \end{matrix}$ \Diamond Power counting $\left(\frac{Q}{\Lambda}\right)^n$ $\begin{matrix} \mathbb{R}^n \mathbb{R}^n & \mathbb{R}^n \mathbb{R}$ ◇ Different versions: chiral, pionless, deltafull **TAT**
- Solve the many-body Schrödinger equation in a controlled manner to a target accuracy

$$
H|\Psi\rangle = E|\Psi\rangle
$$

• Originally formulated to describe fission

Hill and Wheeler, Phys. Rev. 89, 1102 (1953)

- Originally formulated to describe fission Hill and Wheeler, Phys. Rev. 89, 1102 (1953)
- Nowadays, used for many applications
	- ◇ Low-energy spectroscopy (excitation energies, electromagnetic transitions)
	- ◇ Nuclear matrix elements for the neutrinoless double-beta decay Belley, PRL 132, 182502 (2024)
	- \Diamond Initial conditions of ultra-relativistic light-ion collisions

Giacalone, arXiv:2402.05995 (2024); Giacalone, arXiv:2405.20210 (2024)

- Originally formulated to describe fission Hill and Wheeler, Phys. Rev. 89, 1102 (1953)
- Nowadays, used for many applications
	- ◇ Low-energy spectroscopy (excitation energies, electromagnetic transitions)
	- ◇ Nuclear matrix elements for the neutrinoless double-beta decay Belley, PRL 132, 182502 (2024)
	- \Diamond Initial conditions of ultra-relativistic light-ion collisions Giacalone, arXiv:2402.05995 (2024); Giacalone, arXiv:2405.20210 (2024)
- Traditionally, employed with phenomenological nuclear interactions
- Recently, use of chiral interaction obtained from EFT

● Minimization of the energy

$$
\delta\left(\left\langle \Phi \middle| H \middle| \Phi \right\rangle\right)=0
$$

 $\langle \phi | \Phi \rangle$ = product state (Slater determinant or Bogoliubov quasi-particle state)

œz

• Minimization of the energy

$$
\delta\left(\left\langle \Phi \middle| H \middle| \Phi \right\rangle\right)=0
$$

- $\ket{\phi}$ = product state (Slater determinant or Bogoliubov quasi-particle state)
- Use of symmetry-breaking state

$$
\bigl|\Phi\bigr\rangle=\sum_{ZNJM\pi}\sum_{\epsilon}c^{ZNJM\pi}_\epsilon\bigr|\Psi^{ZNJM\pi}_\epsilon\bigr\rangle
$$

• Minimization of the energy

$$
\delta\left(\left\langle \Phi|H|\Phi\right\rangle\right)=0
$$

- \bullet $|\Phi\rangle$ = product state (Slater determinant or Bogoliubov quasi-particle state)
- Use of symmetry-breaking state

$$
\bigl|\Phi\bigr\rangle=\sum_{ZNJM\pi}\sum_{\epsilon}c^{ZNJM\pi}_{\epsilon}\bigl|\Psi^{ZNJM\pi}_{\epsilon}\bigr\rangle
$$

Minimization of the energy

$$
\delta\left(\left\langle \Phi|H|\Phi\right\rangle \right)=0
$$

- \bullet $|\Phi\rangle$ = product state (Slater determinant or Bogoliubov quasi-particle state)
- Use of symmetry-breaking state

$$
\bigl|\Phi\bigr\rangle=\sum_{ZNJM\pi}\sum_{\epsilon}c^{ZNJM\pi}_{\epsilon}\bigl|\Psi^{ZNJM\pi}_{\epsilon}\bigr\rangle
$$

cea

• Explore the energy surface performing constrained minimization

• Explore the energy surface performing constrained minimization

• Explore the energy surface performing constrained minimization

• Explore the energy surface performing constrained minimization

Linear superposition of symmetry-projected states

• We consider the more general wave functions

$$
|\Psi_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon,qK}^{\sigma M} P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where} \quad \sigma \equiv Z, N, J, \pi
$$

Linear superposition of symmetry-projected states

• We consider the more general wave functions

$$
|\Psi_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon,qK}^{\sigma M} P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where} \quad \sigma \equiv Z, N, J, \pi
$$

 \bullet Weights $f_{\epsilon,qK}^{\sigma M}$ determined by a variational principle

$$
\frac{\delta}{\delta f_{\epsilon,qK}^{\sigma M*}}\left(\langle \Psi_{\epsilon}^{\sigma M} | H | \Psi_{\epsilon}^{\sigma M} \rangle \right) = 0
$$

Linear superposition of symmetry-projected states

cea

• We consider the more general wave functions

$$
|\Psi_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon,qK}^{\sigma M} P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where} \quad \sigma \equiv Z, N, J, \pi
$$

 \bullet Weights $f_{\epsilon,qK}^{\sigma M}$ determined by a variational principle

$$
\frac{\delta}{\delta f_{\epsilon,qK}^{\sigma M*}}\left(\langle \Psi_\epsilon^{\sigma M} |H|\Psi_\epsilon^{\sigma M}\rangle\right) = 0
$$

- The method is exact for the deuteron Bally, arXiv.2410.03356 (2024)
- Relative error of 1-2% for $3H$ and $3,4He$ (preliminary)

Bally, in preparation (2025)

- The method is exact for the deuteron Bally, arXiv.2410.03356 (2024)
- Relative error of 1-2% for ³H and ^{3,4}He (preliminary) Bally, in preparation (2025)
- New methods:
	- \Diamond PGCM + Perturbation Theory (PT) Frosini, EPJA 58, 62-63-64 (2022)
	- \circ PGCM $+$ In-Medium Similarity Renormalization Group (IMSRG) Zhou, arXiv:2410.23113 (2024)

Sampling of nucleons

• Here: deformed one-body density at the average deformation \bar{q} of the PGCM ground state

$$
\rho_{\bar{q}}^{(1)}(r_1) = \frac{\langle \Phi(\bar{q}) | a_{r_1}^{\dagger} a_{r_1} P^Z P^N | \Phi(\bar{q}) \rangle}{\langle \Phi(\bar{q}) | P^Z P^N | \Phi(\bar{q}) \rangle}
$$

Sampling of nucleons

• Here: deformed one-body density at the average deformation \bar{q} of the PGCM ground state

$$
\rho_{\bar{q}}^{(1)}(r_1) = \frac{\langle \Phi(\bar{q}) | a_{r_1}^* a_{r_1} P^Z P^N | \Phi(\bar{q}) \rangle}{\langle \Phi(\bar{q}) | P^Z P^N | \Phi(\bar{q}) \rangle}
$$

• Near future: one-body and two-body correlated densities

$$
\rho^{(1)}(r_1) = \frac{\langle \Psi_{\epsilon}^{\sigma M} | a_{r_1}^+ a_{r_1} | \Psi_{\epsilon}^{\sigma M} \rangle}{\langle \Psi_{\epsilon}^{\sigma M} | \Psi_{\epsilon}^{\sigma M} \rangle}
$$

$$
\rho^{(2)}(r_1, r_2) = \frac{\langle \Psi_{\epsilon}^{\sigma M} | a_{r_1}^+ a_{r_2}^+ a_{r_2} a_{r_1} | \Psi_{\epsilon}^{\sigma M} \rangle}{\langle \Psi_{\epsilon}^{\sigma M} | \Psi_{\epsilon}^{\sigma M} \rangle}
$$

 \rightarrow all ingredients already computed, just need to combine them together

Sampling of nucleons

• Here: deformed one-body density at the average deformation \bar{q} of the PGCM ground state

$$
\rho_{\bar{q}}^{(1)}(r_1) = \frac{\langle \Phi(\bar{q}) | a_{r_1}^* a_{r_1} P^Z P^N | \Phi(\bar{q}) \rangle}{\langle \Phi(\bar{q}) | P^Z P^N | \Phi(\bar{q}) \rangle}
$$

• Near future: one-body and two-body correlated densities

$$
\rho^{(1)}(r_1) = \frac{\langle \Psi_{\epsilon}^{\sigma M} | a_{r_1}^+ a_{r_1} | \Psi_{\epsilon}^{\sigma M} \rangle}{\langle \Psi_{\epsilon}^{\sigma M} | \Psi_{\epsilon}^{\sigma M} \rangle}
$$

$$
\rho^{(2)}(r_1, r_2) = \frac{\langle \Psi_{\epsilon}^{\sigma M} | a_{r_1}^+ a_{r_2}^+ a_{r_2} a_{r_1} | \Psi_{\epsilon}^{\sigma M} \rangle}{\langle \Psi_{\epsilon}^{\sigma M} | \Psi_{\epsilon}^{\sigma M} \rangle}
$$

- \rightarrow all ingredients already computed, just need to combine them together
- Ultimate goal: A-body correlated density (as in NLEFT)

$$
\rho^{(A)}\big(r_1,\ldots,r_A\big)=\frac{\big\langle \Psi_\epsilon^{\sigma M}\big| a_{r_1}^+ \ldots a_{r_A}^+ a_{r_A} \ldots a_{r_1} \big| \Psi_\epsilon^{\sigma M} \big\rangle}{\big\langle \Psi_\epsilon^{\sigma M}\big| \Psi_\epsilon^{\sigma M} \big\rangle}
$$

CERN-TH-2024-021 The unexpected uses of a bowling pin: exploiting 20 Ne isotopes for precision characterizations of collectivity in small systems Giuliano Giacalone,^{1,*} Benjamin Bally,² Govert Nijs,³ Shihang Shen,⁴ Thomas Duguet, 5,6 Jean-Paul Ebran, 7,8 Serdar Elhatisari, 9,10 Mikael Frosini, ¹¹ Timo A. Lähde, ^{12, 13} Dean Lee,¹⁴ Bing-Nan Lu,¹⁵ Yuan-Zhuo Ma,¹⁴ Ulf-G. Meißner,^{10,16,17} Jacquelyn Noronha-Hostler,¹⁸ Christopher Plumberg,¹⁹ Tomás R. Rodríguez,²⁰ Robert Roth,^{21, 22} Wilke van der Schee,^{3, 23, 24} and Vittorio Somà CERN-TH-2024-074 Anisotropic flow in fixed-target $^{208}Pb+^{20}Ne$ collisions as a probe of quark-gluon plasma Giuliano Giacalone,^{1,*} Wenbin Zhao,^{2,3,†} Benjamin Bally,⁴ Shihang Shen,⁵ $\begin{array}{l} \underline{\hbox{Thomas Duguet}}^{6,7} \underline{\hbox{ Jean-Paul Ebran}^{8,9}} \underline{\hbox{Seralar Elhatisari}}^{10} \underline{\hbox{Mikael Frosini}}^{11},^{11} \\ \underline{\hbox{Timo A. Lähde}}^{12,13} \underline{\hbox{Dean Lee}}^{14} \underline{\hbox{Bing-Nan Lu}}^{15} \underline{\hbox{Yuan-Zhuo Ma}}^{15} \underline{\hbox{Maal Frosini}}^{14} \underline{\hbox{Ulf-G. Meifher}}^{15},^{16,17,5} \end{array}$

Govert Nijs,¹⁸ Jacquelyn Noronha-Hostler,¹⁹ Christopher Plumberg,²⁰ Tomás R. Rodríguez,²¹ Robert Roth, 22,23 Wilke van der Schee, 18,24,25 Björn Schenke, 26,4 Chun Shen, $^{27,28,\frac{5}{3}}$ and Vittorio Soma⁶

- Collaboration between low- and high-energy nuclear physics communities
	- ◇ Heavy-ion collisions
	- ◇ Nuclear structure (PGCM)
	- ◇ Nuclear structure (NLEFT)

Chiral Hamiltonian: Hüther N3LO

Hüther et al., PLB 808, 135651 (2019)

• Collective coordinates $q: \beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}$

Chiral Hamiltonian: Hüther N3LO

Hüther et al., PLB 808, 135651 (2019)

• Collective coordinates $q: \beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}$

● Numerical suite TAURUS

Bally, EPJA 57, 69 (2021); Bally, EPJA 60, 62 (2024) Repository: <https://github.com/project-taurus>

Chiral Hamiltonian: Hüther N3LO

Hüther et al., PLB 808, 135651 (2019)

• Collective coordinates $q: \beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}$

● Numerical suite TAURUS

Bally, EPJA 57, 69 (2021); Bally, EPJA 60, 62 (2024) Repository: <https://github.com/project-taurus>

• Topaze supercomputer (CEA/CCRT)

- Relative agreement with experimental data
- Density ∼ tetrahedron of four α -like clusters

²⁰Ne: spectroscopy and deformed one-body density

- Good agreement with experimental data
- Spectroscopic moment $Q_s = \langle er^2 Y_{20} \rangle$
- Density \sim 16 O + α

Other example: ²⁴Mg

Bally, EPJA 60, 62 (2024)

- Ground state exhibits large intrinsic triaxial deformation
- Excellent description using χ EFT Hamiltonian
- PGCM: efficient method to capture collective correlations in atomic nuclei
- Can be used to better model the initial conditions of high-energy experiments

- PGCM: efficient method to capture collective correlations in atomic nuclei
- Can be used to better model the initial conditions of high-energy experiments
- Predictions for $^{16}O + ^{16}O$ and $^{16}O + ^{208}Pb$ runs at LHC in 2025

- PGCM: efficient method to capture collective correlations in atomic nuclei
- Can be used to better model the initial conditions of high-energy experiments
- Predictions for $^{16}O + ^{16}O$ and $^{16}O + ^{208}Pb$ runs at LHC in 2025
- Predictions for possible 20 Ne + 20 Ne and 20 Ne + 208 Pb runs at LHC

- PGCM: efficient method to capture collective correlations in atomic nuclei
- Can be used to better model the initial conditions of high-energy experiments
- Predictions for $^{16}O + ^{16}O$ and $^{16}O + ^{208}Pb$ runs at LHC in 2025
- Predictions for possible 20 Ne + 20 Ne and 20 Ne + 208 Pb runs at LHC
- In the future: sampling based on the correlated densities
	- \circ one-body + two-body densities
	- ◇ A-body density