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Motivations

● Collaboration between low- and high-energy nuclear physics

● Nuclear deformation impacts initial conditions and final state observables
Giacalone, PRL 127, 242301 (2021); Bally, PRL 128, 082301 (2022); Jia, PRL 131, 022301 (2023); etc.

● Use nuclear structure information to better

◇ determine the initial conditions of ultra-relativistic ion-ion collisions

◇ understand the results of high-energy experiments

● Use high-energy experiments to gain knowledge about atomic nuclei properties

● Projected Generator Coordinate Method (PGCM) in this context
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Previous works on heavy-ion collisions

● PGCM calculations with a phenomenological interaction: 129Xe, 197Au, 208Pb
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Ab initio nuclear structure

● Lattice QCD calculations of atomic nuclei not yet possible

● Nucleons and pions as relevant degrees of freedom to describe atomic nuclei

● Construct nuclear Hamiltonian through Effective
Field Theory (EFT)
Hammer, RMP 92, 025004 (2020)

◇ Consistent with symmetries of QCD

◇ Power counting (Q
Λ
)
n

◇ Different versions: chiral, pionless, deltafull

● Solve the many-body Schrödinger equation in a controlled manner to a target
accuracy

H ∣Ψ⟩ = E ∣Ψ⟩
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Reach of ab initio methods
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Projected Generator Coordinate Method (PGCM)

● Originally formulated to describe fission
Hill and Wheeler, Phys. Rev. 89, 1102 (1953)

● Nowadays, used for many applications

◇ Low-energy spectroscopy (excitation energies, electromagnetic transitions)

◇ Nuclear matrix elements for the neutrinoless double-beta decay
Belley, PRL 132, 182502 (2024)

◇ Initial conditions of ultra-relativistic light-ion collisions
Giacalone, arXiv:2402.05995 (2024); Giacalone, arXiv:2405.20210 (2024)

● Traditionally, employed with phenomenological nuclear interactions

● Recently, use of chiral interaction obtained from EFT
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Symmetry-breaking mean-field reference states

● Minimization of the energy
δ (⟨Φ∣H ∣Φ⟩) = 0

● ∣Φ⟩ ≡ product state (Slater determinant or Bogoliubov quasi-particle state)

● Use of symmetry-breaking state
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Symmetry-breaking mean-field reference states

● Explore the energy surface performing constrained minimization

δ (⟨Φ(q)∣H−λQ ∣Φ(q)⟩) = 0 with ⟨Φ(q)∣Q ∣Φ(q)⟩ = q

h̄ω h̄ω h̄ω
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Linear superposition of symmetry-projected states

● We consider the more general wave functions
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Recent developments

● The method is exact for the deuteron
Bally, arXiv.2410.03356 (2024)

● Relative error of 1-2% for 3H and 3,4He (preliminary)
Bally, in preparation (2025)

● New methods:

◇ PGCM + Perturbation Theory (PT)
Frosini, EPJA 58, 62-63-64 (2022)

◇ PGCM + In-Medium Similarity Renormalization Group (IMSRG)
Zhou, arXiv:2410.23113 (2024)
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Sampling of nucleons

● Here: deformed one-body density at the average deformation q̄ of the PGCM
ground state

ρ
(1)
q̄ (r1) =

⟨Φ(q̄)∣a+r1ar1P
ZPN
∣Φ(q̄)⟩

⟨Φ(q̄)∣PZPN ∣Φ(q̄)⟩

● Near future: one-body and two-body correlated densities
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→ all ingredients already computed, just need to combine them together

● Ultimate goal: A-body correlated density (as in NLEFT)
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Preprints: arXiv:2402.05995 and arXiv:2405.20210

● Collaboration between low- and high-energy nuclear physics communities

◇ Heavy-ion collisions
◇ Nuclear structure (PGCM)
◇ Nuclear structure (NLEFT)
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Computational aspects

● Chiral Hamiltonian: Hüther N3LO
Hüther et al. , PLB 808, 135651 (2019)

● Collective coordinates q: β20, β22, β30, β32

● Numerical suite TAURUS
Bally, EPJA 57, 69 (2021); Bally, EPJA 60, 62 (2024)

Repository: https://github.com/project-taurus

● Topaze supercomputer (CEA/CCRT)
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16O: spectroscopy and deformed one-body density

0+
1

0+
2

2+
1

0+
1

2+
1

0+
2

B(E2) (e2fm4)

● Relative agreement with experimental data

● Density ∼ tetrahedron of four α-like clusters
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20Ne: spectroscopy and deformed one-body density
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● Good agreement with experimental data

● Spectroscopic moment Qs = ⟨er
2Y20⟩

● Density ∼ 16O + α
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Other example: 24Mg
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Bally, EPJA 60, 62 (2024)

● Ground state exhibits large intrinsic triaxial deformation

● Excellent description using χEFT Hamiltonian
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Summary and outlook

● PGCM: efficient method to capture collective correlations in atomic nuclei

● Can be used to better model the initial conditions of high-energy experiments

● Predictions for 16O + 16O and 16O + 208Pb runs at LHC in 2025

● Predictions for possible 20Ne + 20Ne and 20Ne + 208Pb runs at LHC

● In the future: sampling based on the correlated densities

◇ one-body + two-body densities

◇ A-body density
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