DRD1 H4(PPE134) 2024 Test Beam

Eraldo Oliveri: +41754116126 Yorgos Tsipolitis: +41754118992 Karl Floethner : +41754110839

Generic and Application driven R&D

Technologies: Micromegas, uRWELL, uRGroove, GEM **Application:** High Rate, Timing, Calorimetry **Readout:** Capacitive Coupling, Resistive Sharing

Project driven R&D FCC-muons uRWELL/TIGER

Detector Commissioning MPGDHCAL

FE electronics and DAQ Straw, VMM3a and TPC

Wed. 26/06/2024 - Wed. 10/07/2024

Beam Conditions

Muon Beam Purity: perfectly satisfying our needs (no showers produced by our detectors)

• Pion: >10e+7/spill

 Muon/Pion Rate: Very Satisfied. Huge thanks to Nikos, Bastien and Frederic (Aberle, RP) for helping optimize beam intensity and RP alarms. DAQ rate doubled in some setup. Very important and really appreciated.

Setups (8)

Basic concept of µrPICOSEC detector

Concept of \murPICOSEC: fast timing gaseous detector using μ RWELL amplification \rightarrow time resolution of ~10 (s) ps

- 1. Cherenkov photons: relativistic charged particle creates Cerenkov photons → prompt photons i.e. good timing.
- 2. Photoelectrons: convert the Cerenkov photons into electrons, all created at the location → good timing
- 3. Pre-amplification: First amplification of electrons ~100 μm gas in high drift field region (~20 kV/cm)
- 4. Amplification: Final electron amplification in μRWELL gain structure → high electric field (>40 kV/cm)
- 5. Electronic Signal: Arrival of the amplified electrons to the anode creates a signal.

7/11/2024

PICOSEC Micromegas precise timing

Precise timing detector concept

Cherenkov radiator coupled to semi-transparent photocathode with two-stage amplification (Micromegas or μ RWELL-based)

Testbeam setup: GEM trackers + MCP-PMT time reference detectors + multiple DUTs

June 2024 test beam campaign program

4 teams participating in data taking (CERN GDD, RBI, CEA Saclay, JLAB+SBU)

Performance studies

- Std mesh / fine mesh / electroformed mesh Micromegas performance
- Detailed uniformity maps of 10 and 15mm diameter prototypes
- Spatial resolution evaluation with higher readout granularity
- Readout electronics comparisons (8 bit vs. 12 bit digitisation, TIA, FastIC, SAMPIC)
- DLC photocathodes with graphene layer

96 pad low-material budget Picosec

Resistive multipad Micromegas

µRWELL PICOSEC in dedicated JLAB tracker

- Single channel prototypes
- 10x10 multi-channel µRWELL

Performance studies on single pad prototypes Fine readout pads for evaluation of spatial resolution 10x10 multi pad uniformity map (efficiency / gain / timing resolution)

Multi-channel readout Preamp cards + SAMPIC FastIC multi-channel

MiniCactus Monolithic CMOS DMAPS for timing R&D

Charge collecting diode and readout front-end on same silicon substrate
Pixel sizes :

0.5 mm x 1 mm , 1 mm x 1 mm and 0.5 mm x 0.5 mm diodes \Box 3 different preamps (CSA1, CSA2, VPA)

□New multistage discriminator with programmable hysteresis

□ Improved layout w.r.t. MiniCactus v1 for better mixed-signal coupling rejection

Measurements :

 \Box HV scans (S/N, time resolution vs HV)

□ Pixel scans (comparison of FE readout options)

□ Three different sensor thickness (200, 175, 150 u)

DT MCPMT-MINI (ps)

Straw Tracker R&D setup @H4 (Jul 24)

Motivation:

Beam monitoring (with ECAL) and neutrino flux measurements

200k straws in total

Tracking and vertex reconstruction for HiddenSector Detector **10k** channels Also **DRD1-WP3**, COMET, SPD...

The same straw technology (ultra-sonic ℤ velding) but different ≟ eometry/material

TB measurements supporting

- Tracker prototyping
- Choice of read-out electronics

The setup:

Reference tracking:

 MM detectors (250 um, 400 um) + Tiger readout (Torino University) + Timepix

Under test: a combined straw tracker prototype + two types of readout: Tiger and VMM3

- Stray array (currently 2+1 straws :) with improved geometry
- 12 Tiger R/O with 6 new FEBs and Guffi2.0
- New design stand-alone SHiP straw

RD51/DRD1 VMM3a/SRS telescope

In addition to continuous self-triggered readout mode, VMM3a/SRS now also contains an externally triggered readout mode.

Goal of this test beam: performance characterisation of triggered mode

 \rightarrow Useful for integration of front-end electronics with other telescopes and experiments

Measurements and results so far:

→ Externally triggered mode allows operation at lower thresholds (1 fC THL instead of typically 1.5 to 2.0 fC in the self-triggered mode) → Operation at high rates possible (> 100 kHz trigger rate), but detailed analysis still ongoing.

Thanks a lot to Bastien and Nikos for the excellent beam quality, especially the pion beam for the rate tests of the triggered mode

USTC beam test: Cylindrical µRGroove

Setup:

- Gas: Ar/iC₄H₁₀(95:5) and Ar/CO₂/CF₄(45/15/40)
- Beam: 150GeV/c muon
- Readout from X-strip(top), V-strip grounded
- 3×MM Tracker+APV25+SRS+mmDAQ
- CC for the perpendicular and µTPC for the oblique track

USTC Group: Yi Zhou, Siqi He

- ✓ Spatial resolution by CC: 90~100µm
- ✓ Detection efficiency >95%;
- ✓ Preliminary results of µTPC: ~150µm

MPGDHCAL

Setup:

- •Tracker made of:
 - 2 Micromegas Tmm
 - 1 GEM with double readout
 - 2 Scintillators

•Calo structure:

- all pad chambers with pad size of 1x1cm2
- 3 Micromegas
- 5 µRWELL

Measurements:

•muons beam:

- HV top/mesh scan
- Drift scan
- X&Y scan

•pions beam:

• rate capability

FCC-ee group testing µRWELL and TIGER electronics

Detector under test:

4 μRWELL w/ 40 cm strip length 1D strip pitch of 0.4/0.8/1.2/1.6 mm

Readout under test:

- TIGER FEE
- GEMROC FPGA

Goals of the testbeam:

- Define the state of art of µRWELL+TIGER for IDEA Muon system optimization studies
- Compare the APV-25 performance studies with TIGER
- Performance in Ar:CO2 and Ar:CO2:CF4 comparison
- Collect data to compare experimental measurement and simulation

Measurements:

- Gain scan to evaluate the amplification/saturation/performance
- Drift scan to evaluate the signal collection
- Threshold scan to optimize S/N

