The road less travelled: NNLL for event shapes with PanScales

Ludovic Scyboz

ARC DECRA DE230100867

CERN QCD Seminar September 23rd 2024

Shower uncertainties 1/29

▶ Differences between parton showers / MC event generators \rightarrow large systematic uncertainties in e.g. jet calibration ▶ These ultimately propagate to most analyses

Shower uncertainties 2 / 29

- \triangleright Theory prediction (= shower) used as input for a large set of machine-learning tools
- ▶ ML will learn unphysical features

selected collider-QCD accuracy milestones

selected collider-QCD accuracy milestones

 $NNLL = next-to.next-to-leading logarithms$

Final-state dipole shower

Start with a $q\bar{q}$ final state, which spans a colour dipole

Shower starting scale

Final-state dipole showers 4/29

$$
\frac{\mathrm{d}\mathcal{P}_2(v)}{\mathrm{d}v} = -f_{2\to 3}^{q\bar{q}}(v)\mathcal{P}_2(v)
$$

Throw a random number to determine the scale of the next emission, v_1

Final-state dipole showers 4/29

Final-state dipole showers 4/29

Dipole/antenna showers construction 5/29

Evolution variable:

- Transverse momentum k_t
- Opening angle θ
- Virtuality m_{ik}^2 , ...

Kinematic map
$$
(n \to n+1)
$$

- Global recoil
- Local recoil

$$
\begin{split} p_k &= a_k \tilde{p}_i + b_k \tilde{p}_j + k_\perp\,, \\ p_i &= a_i \tilde{p}_i + b_i \tilde{p}_j - f k_\perp\,, \\ p_j &= a_j \tilde{p}_i + b_j \tilde{p}_j - (1-f) k_\perp \\ &\mathbb{B}^\mu_{\ \nu} \,, \quad Q' = r\,\bar{Q} \end{split}
$$

Recoil attribution

- Emitter \leftrightarrow spectator partitioning
- Event \leftrightarrow dipole COM frame

[Logarithmic accuracy](#page-12-0) [in the PanScales showers](#page-12-0)

Oxford

Gavin Salam

Jack Helliwell

Silvia Zanoli

Manchester

Mrinal Dasgupta

Monash

Ludo Scyboz

Basem El-Menoufi

PanScales current members A project to bring logarithmic understanding and accuracy to parton showers

Alexander Karlberg Silvia Ferrario

Alba Soto Ontoso

Pier Monni

Oxford

Gavin Salam

Jack Helliwell

Silvia Zanoli

Mrinal Dasgupta

Keith Hamilton

CERN

:oso

+ Nicolas Schalch t members starting in Oxfordogarithmic unuersianyiniy and

accuracy to partoryshowers

Monash

Ludo Scyboz

Basem El-Menoufi

 \triangleright Showers resum large logarithms, L , of ratios of scales (e.g. $L = \ln \frac{\mathcal{O}}{Q}$)

... by iterating soft (eikonal) and collinear kernels over an ensemble of dipoles

- \triangleright Showers resum large logarithms, L , of ratios of scales (e.g. $L = \ln \frac{\mathcal{O}}{Q}$)
- ▶ Dominant terms are called leading logarithms (LL), subdominant *next-to-leading* (NLL), ...

Logarithmic accuracy [Bozzi, Catani et al.] 7 / 29

- \triangleright Showers resum large logarithms, L , of ratios of scales (e.g. $L = \ln \frac{\mathcal{O}}{Q}$)
- ▶ Dominant terms are called leading logarithms (LL), subdominant *next-to-leading* (NLL), ...

[Bozzi, Catani et al.]

$$
\Sigma(\mathcal{O}) = \mathcal{P}(\mathcal{O} < e^L) \simeq \exp\left[\underbrace{Lg_1(\alpha_s L)}_{\text{LL}} + \underbrace{g_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s g_3(\alpha_s L)}_{\text{NNLL}} + \dots\right]
$$
\n
$$
\mathcal{O}(\alpha_s^n L^{n+1}) \quad \mathcal{O}(\alpha_s^n L^n) \quad \mathcal{O}(\alpha_s^n L^{n-1})
$$

(large logarithm $L \simeq \ln \mathcal{O}/Q$ of the value of the observable over some hard scale Q)

Logarithmic accuracy Bozzi, Catani et al. 7 / 29

- \triangleright Showers resum large logarithms, L , of ratios of scales (e.g. $L = \ln \frac{\mathcal{O}}{Q}$)
- ▶ Dominant terms are called leading logarithms (LL), subdominant *next-to-leading* (NLL), ...

[Bozzi, Catani et al.]

$$
\Sigma(\mathcal{O}) = \mathcal{P}\left(\mathcal{O} < e^L\right) \simeq \exp\left[\underbrace{Lg_1(\alpha_s L)}_{\text{LL}} + \underbrace{g_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s g_3(\alpha_s L)}_{\text{NNLL}} + \dots\right]
$$

(large logarithm $L \simeq \ln \mathcal{O}/Q$ of the value of the observable over some hard scale Q)

Standard partons showers reproduce LL terms, but they differ from NLL on

▶ An emission that is "far away" from another should not significantly modify the latter's kinematics

Necessary NLL condition 8 / 29

▶ An emission that is "far away" from another should not significantly modify the latter's kinematics

► Here, "far" means in either $\ln k_t$,, or $\eta \simeq \ln \frac{1}{\theta}$

▶ An emission that is "far away" from another should not significantly modify the latter's kinematics

► Here, "far" means in either $\ln k_t$,, or $\eta \simeq \ln \frac{1}{\theta}$

This ensures that the QCD matrix element is reproduced in all singular limits that contribute at NLL

The PanScales showers 9 / 29

 \blacktriangleright Evolution variable:

$$
v \simeq k_t \theta^{\beta_{\rm PS}} \,, \qquad 0 \leq \beta_{\rm PS} < 1
$$

▶ Recoil scheme:

▶ Local [as in standard showers] ▶ Global [recoil shared across the whole event through (rescaling and) boost]

$$
\lim_{k_{\perp} \to 0} \mathbb{B}_{\nu}^{\mu} p^{\nu} \sim p^{\mu} - \frac{Q \cdot p}{Q^2} k_{\perp}^{\mu}
$$

similarly, Alaric [Herren et al. '22,'24], Manchester-Vienna [Forshaw et al. '20] Apollo [Preuss '24]

The PanScales showers 9 / 29

 \blacktriangleright Evolution variable:

$$
v \simeq k_t \theta^{\beta_{\rm PS}} \,, \qquad 0 \leq \beta_{\rm PS} < 1
$$

▶ Recoil scheme:

▶ Local [as in standard showers]

▶ Global [recoil shared across the whole event through (rescaling and) boost]

Recipe for all-order logarithmic tests 10 / 29

1. Run full shower with specific $\alpha_s = \alpha_s(Q)$ Should $\Sigma_{PS}/\Sigma_{NLL} = 1$?

No! There are shower-generated NNLL terms still...

 $\Sigma_{\rm PS}$ = exp $[Lg_1(\lambda) + g_2(\lambda) + \alpha_s g_3(\lambda) + ...]$ $\Sigma_{\text{NLL}} = \exp\left[Lq_1(\lambda) + q_2(\lambda)\right]$

Recipe for all-order logarithmic tests 10/29

1. Run full shower with specific $\alpha_s = \alpha_s(Q)$ Should $\Sigma_{PS}/\Sigma_{NLL} = 1$? No! There are shower-generated NNLL terms still...

2. Reduce α_s but keep $\alpha_s L =: \lambda$ constant ▶ (NLL effects $\sim \alpha_s^n L^n$, but NNLL $\sim \alpha_s^{n+1} L^n$)

 $\Sigma_{\rm PS}$ = exp $[Lg_1(\lambda) + g_2(\lambda) + \alpha_s g_3(\lambda) + ...]$ $\Sigma_{\text{NLL}} = \exp\left[Lq_1(\lambda) + q_2(\lambda)\right]$

Recipe for all-order logarithmic tests 10/29

1. Run full shower with specific $\alpha_s = \alpha_s(Q)$ Should $\Sigma_{PS}/\Sigma_{NLL} = 1$? No! There are shower-generated NNLL terms still...

2. Reduce α_s but keep $\alpha_s L =: \lambda$ constant ▶ (NLL effects $\sim \alpha_s^n L^n$, but NNLL $\sim \alpha_s^{n+1} L^n$)

 $\Sigma_{\rm PS}$ = exp $[Lg_1(\lambda) + g_2(\lambda) + \alpha_s g_3(\lambda) + ...]$ $\Sigma_{\text{NLL}} = \exp\left[Lq_1(\lambda) + q_2(\lambda)\right]$

Recipe for all-order logarithmic tests 10/29

1. Run full shower with specific $\alpha_s = \alpha_s(Q)$ Should $\Sigma_{PS}/\Sigma_{NLL} = 1$? No! There are shower-generated NNLL terms still...

- 2. Reduce α_s but keep $\alpha_s L =: \lambda$ constant ▶ (NLL effects $\sim \alpha_s^n L^n$, but NNLL $\sim \alpha_s^{n+1} L^n$)
- 3. Extrapolate $\alpha_s \to 0$

$$
\Sigma_{PS} = \exp [Lg_1(\lambda) + g_2(\lambda) +
$$

$$
\Sigma_{NLL} = \exp [Lg_1(\lambda) + g_2(\lambda)]
$$

Numerical NLL accuracy tests 11/29

Numerical NLL accuracy tests 11/29

Numerical NLL accuracy tests 11/29

▶ We "only" need two ingredients:

 \blacktriangleright The correct inclusive rate of emission up to $\mathcal{O}(\alpha_s^2)$ (CMW α_s scheme) [Catani et al '91]

$$
\alpha_s^{\text{eff}} = \alpha_s \left[1 + \frac{\alpha_s}{2\pi} K_1 \right]
$$

▶ The condition that any emission does not affect other emissions "far" in the Lund plane

▶ We can relate shower ingredients to analytic resummations

e.g. [Banfi et al, 1807.11487] (ARES)

- We need:
	- ▶ an NLL shower to start with [PanScales]

$\n \text{NLL} \rightarrow \text{NNLL}$ 13 / 29

▶ We can relate shower ingredients to analytic resummations

e.g. [Banfi et al, 1807.11487] (ARES)

- We need:
	- ▶ an NLL shower to start with [PanScales]

 \blacktriangleright inclusive emission rate up to $\mathcal{O}(\alpha_s^3)$ [Banfi et al '18], [Catani et al '19]

$$
\alpha_s^{\text{eff}} = \alpha_s \left[1 + \frac{\alpha_s}{2\pi} K_1 + \frac{\alpha_s^2}{4\pi^2} K_2 \right]
$$

$\n \text{NLL} \rightarrow \text{NNLL}$ 13 / 29

▶ We can relate shower ingredients to analytic resummations

e.g. [Banfi et al, 1807.11487] (ARES)

- We need:
	- ▶ an NLL shower to start with [PanScales]

 \blacktriangleright inclusive emission rate up to $\mathcal{O}(\alpha_s^3)$ [Banfi et al '18], [Catani et al '19]

▶ 2-jet NLO matching [Hamilton et al '22]

$$
\Sigma = \sigma_{\text{LO}} \left(1 + \frac{\alpha_s}{\pi} C_1 \right) \exp \left[Lg_1(\alpha_s L) + \ldots \right]
$$

terms ~ $\alpha_s^n L^{n-1}$

$\n \text{NLL} \rightarrow \text{NNLL}$ 13 / 29

▶ We can relate shower ingredients to analytic resummations

e.g. [Banfi et al, 1807.11487] (ARES)

- We need:
	- ▶ an NLL shower to start with [PanScales]

 \blacktriangleright inclusive emission rate up to $\mathcal{O}(\alpha_s^3)$ [Banfi et al '18], [Catani et al '19]

▶ 2-jet NLO matching [Hamilton et al '22]

▶ radiation pattern for soft partons up to $\mathcal{O}(\alpha_s^2)$ (i.e. double-soft)

terms ~ $\alpha_s^n L^{n-1}$

$\n NLL \rightarrow NNLL$ 13 / 29

▶ We can relate shower ingredients to analytic resummations

e.g. [Banfi et al, 1807.11487] (ARES)

- We need:
	- ▶ an NLL shower to start with [PanScales]

 \blacktriangleright inclusive emission rate up to $\mathcal{O}(\alpha_s^3)$ [Banfi et al '18], [Catani et al '19]

▶ 2-jet NLO matching [Hamilton et al '22]

▶ radiation pattern for soft partons up to $\mathcal{O}(\alpha_s^2)$ (i.e. double-soft)

▶ matrix element for hard radiation up to $\mathcal{O}(\alpha_s^2)$ (i.e. triple-coll. $\equiv B_2(z)$)

terms ~ $\alpha_s^n L^{n-1}$

▶ First time a shower goes **demonstrably** beyond NLL

Parton showering with higher-logarithmic accuracy for soft emissions

Silvia Ferrario Ravasio,¹ Keith Hamilton,² Alexander Karlberg,¹ Gavin P. Salam.^{3,4} Ludovic Scyboz.³ and Gregory Sovez^{1,5}

¹ CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland 2 Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK ³ Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK ⁴ All Souls College, Oxford OX1 4AL, UK ⁵IPhT, Université Paris-Saclay, CNRS UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette, France

The accuracy of parton-shower simulations is often a limiting factor in the interpretation of data from high-energy colliders. We present the first formulation of parton showers with accuracy one order beyond state-of-the-art next-to-leading logarithms, for classes of observable that are dominantly sensitive to low-energy (soft) emissions, specifically non-global observables and subjet multiplicities. This represents a major step towards general next-to-next-to-leading logarithmic accuracy for parton showers.

Real matrix element 15/29

▶ One corrects the shower (ps) acceptance probability to recover the exact double-soft (ds) matrix element,

 \blacktriangleright Part of the virtuals already covered by K_1 (= K_{CMW}), which gets the correct NLO rate in the soft-collinear region

$$
\alpha_s \rightarrow \alpha_s^{\text{eff}} = \alpha_s \left[1 + \frac{\alpha_s}{2\pi} K_1 \right]
$$

▶ At large angle, $y \sim 0$, this is not enough. Correct this,

$$
\alpha_s \to \alpha_s^{\text{eff}} = \alpha_s \left[1 + \frac{\alpha_s}{2\pi} (K_1 + \Delta K_1(y)) \right]
$$

▶ Related to the fact that the shower does not conserve kinematics of the parent, $y_{12} \neq y_{\tilde{1}}$

$$
\Delta K_1 = \int d\Phi_{12/\tilde{1}} |M_{12/\tilde{1}}|^2 - \int d\Phi_{12/\tilde{1}_{\rm sc}} |M_{12/\tilde{1}_{\rm sc}}|^2
$$

(Shower-dependent) ΔK evaluated and tabulated

▶ Transverse energy in a slice, $\sum_i E_{T,i}$ with $|y|$ < 1

▶ Comparison with GNOLE [Banfi, Dreyer, Monni '21]

Double-soft: phenomenological impact 20 / 29

- ▶ Central value only slightly affected by double-soft corrections
- ▶ But scale uncertainties greatly reduced!

- ▶ We can relate shower ingredients to analytic resummations [Banfi et al, 1807.11487] (ARES)
- We need:
	- ▶ an NLL shower to start with ✓ [PanScales]

 \blacktriangleright inclusive emission rate up to $\mathcal{O}(\alpha_s^3)$ [Catani et al 1904.10365]

▶ 2-jet NLO matching ✓

[Hamilton, Karlberg, Salam, LS, Verheyen]

- ▶ radiation pattern for soft partons up to $\mathcal{O}(\alpha_s^2)$ (i.e. double-soft) \checkmark
- ▶ matrix element for hard radiation up to $\mathcal{O}(\alpha_s^2)$ (i.e. triple-coll. $\equiv B_2(z)$)

For event shapes \circledcirc NNLL, we only need the **integrated** quantities!

$$
22 / 29
$$

$$
\alpha_s^{\text{eff}} = \alpha_s \left[1 + \frac{\alpha_s}{2\pi} (K_1 + \Delta K_1) \right]
$$

▶ The shower does not conserve e.g. the rapidity of the parent gluon, $y_{\tilde{1}} \neq y_{12}$ (assumed to hold in calculating K_1) \rightarrow average rapidity drift $\langle \Delta_u \rangle$

▶ Correct the depleted central region, by adding a total $\Delta K_1^{\text{int}} = \int dy \Delta K_1(y)$:

$$
\Delta K_1^{\text{int}} = 2 \langle \Delta_y \rangle
$$

▶ Note: for event shapes, integrated quantity is enough at NNLL

The drift picture 22 / 29

The drift picture: B_2 , K_2 and $\mathcal F$ 23 / 29

$$
\alpha_s^{\textrm{eff}} = \alpha_s \left[1 + \frac{\alpha_s}{2\pi} (K_1 + \Delta K_1 + B_{2,\textrm{PS}}^{\textrm{int}}) + \frac{\alpha_s^2}{4\pi^2} K_{2,\textrm{PS}} \right]
$$

2

 ΔK

Similar connection with hard-collinear from $\ln k_i$ [Dasgupta et al. '21, '23, '24]

$$
B_{2,\rm PS}^{\rm int} = B_{2,\rm NLO}^{\rm int} - \langle \Delta_y \rangle - \langle \Delta_{\ln k_t} \rangle + \beta_0 \frac{\pi^2}{12}
$$

 \blacktriangleright Inclusive rate correction at $\mathcal{O}(\alpha_s^3)$ [Banfi et al. '18], [Catani et al. '19]

$$
K_{2,\text{PS}} = K_2^{\text{analytic}} - 4\beta_0 \langle \Delta_{\text{ln}k_t} \rangle
$$

- Similarly for multiple emission constraint $\mathcal F$
- ▶ Proof of drift equivalence in appendices of [2406.02661]

 $k_t = v_{\text{hc}} \equiv v^{\frac{1}{1+\beta_{\text{obs}}}}$

NNLL tests: $\alpha_s \to 0$ limit 24 / 29

NNLL tests 25 / 29

NNLL: preliminary pheno 26 / 29

• Some LL/NLL showers require $\alpha_s(M_Z) \sim 0.130$ to agree with data

NNLL: impact of tuning 27 / 29

- ▶ Shower accuracy has lagged behind for 40 years, compared to the precision in other contexts
- ▶ NLL now established [PanScales], [Alaric], [FHP], [Apollo], [Deductor],...
- ▶ Major steps towards NNLL accuracy (for now in e^+e^-):
	- ▶ Double-soft corrections in PanGlobal
	- ▶ Drift picture & NNLL ingredients equivalence "theorems" \rightsquigarrow NNLL for event shapes in PanGlobal!
- ▶ Work on triple-collinear see e.g. recent [van Beekveld et al, 2409.08316]
- Double-soft & drifts for ISR, as well as for PanLocal $\beta = 1/2$
- \blacktriangleright NLO matching in pp [24XX.YYYY]
- Quark masses [2XXX.YYYY]

▶ ...

[Backup](#page-53-0)

