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Shower uncertainties 1 / 29

▶ Differences between parton showers / MC event generators
⇝ large systematic uncertainties in e.g. jet calibration

▶ These ultimately propagate to most analyses

[ATLAS, 2007.02645] [LHCb, 2109.01113]
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▶ Theory prediction (= shower) used as input for a large set
of machine-learning tools

▶ ML will learn unphysical features

[courtesy F. Dreyer] [Nachman et al. 1511.05190]
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Final-state dipole showers 4 / 29

Start with a qq̄ final state,

which spans a colour dipole

Shower starting scale
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dP2(v)
dv = −f qq̄

2→3(v)P2(v)

Throw a random number to
determine the scale of the
next emission, v1
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Final-state dipole showers 4 / 29

dP3(v)
dv = −[f qg

2→3(v)

+f gq̄
2→3(v)]P3(v)

Throw a random number to
determine the scale of the
next emission, v2

Dipoles emit independently
(incoherently) ∼ large-NC limit



Final-state dipole showers 4 / 29

→ down to some cutoff

vcut ∼ 1GeV

at which point the
shower stops



Dipole/antenna showers construction 5 / 29

Evolution variable:
• Transverse momentum kt
• Opening angle θ
• Virtuality m2

ik, ...

Kinematic map (n → n+ 1)
• Global recoil
• Local recoil

Recoil attribution
• Emitter ↔ spectator partitioning
• Event ↔ dipole COM frame

dipole COM

event COM



Logarithmic accuracy
in the PanScales showers
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Logarithmic accuracy 7 / 29

▶ Showers resum large logarithms, L,
of ratios of scales (e.g. L = ln O

Q )

... by iterating soft (eikonal) and collinear kernels over an
ensemble of dipoles

▶ Dominant terms are called
leading logarithms (LL),
subdominant next-to-leading (NLL), ...

Σ(O) = P
(
O < eL

)
≃ exp

Lg1(αsL)︸ ︷︷ ︸
LL

+ g2(αsL)︸ ︷︷ ︸
NLL

+αsg3(αsL)︸ ︷︷ ︸
NNLL

+ . . .

 resummed

(large logarithm L ≃ lnO/Q of the value of the observable over some hard scale Q)

Standard partons showers reproduce LL terms, but . . .
. . . they differ from NLL on

[Bozzi, Catani et al.]

O(αn
sL

n+1) O(αn
sL

n) O(αn
sL

n−1)
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Necessary NLL condition 8 / 29

▶ An emission that is “far away” from another should not
significantly modify the latter’s kinematics

▶ Here, “far” means in either ln kt,, or η ≃ ln 1
θ

This ensures that the QCD matrix element is reproduced in all
singular limits that contribute at NLL
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The PanScales showers 9 / 29

▶ Evolution variable:

v ≃ ktθ
βPS , 0 ≤ βPS < 1

▶ Recoil scheme:
▶ Local [as in standard showers]
▶ Global [recoil shared across the whole event

through (rescaling and) boost]

lim
k⊥→ 0

Bµ
ν p

ν ∼ pµ − Q · p
Q2

kµ⊥

similarly, Alaric [Herren et al. ’22,’24],
Manchester-Vienna [Forshaw et al. ’20]
Apollo [Preuss ’24]

PanLocal
kt
√
θ ordered

Dipole/antenna

PanGlobal
kt or kt

√
θ ordered
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Recipe for all-order logarithmic tests 10 / 29

1. Run full shower with specific αs = αs(Q)

2. Reduce αs but keep αsL =: λ constant
▶ (NLL effects ∼ αn

sL
n, but NNLL ∼ αn+1

s Ln)

3. Extrapolate αs → 0

ΣPS = exp [Lg1(λ) + g2(λ) + αsg3(λ) + ...]

ΣNLL = exp [Lg1(λ) + g2(λ)]

ΣPS = exp [Lg1(λ) + g2(λ) + αsg3(λ) + ...]

ΣNLL = exp [Lg1(λ) + g2(λ)]

ΣPS = exp [Lg1(λ) + g2(λ) + αsg3(λ) + ...]

ΣNLL = exp [Lg1(λ) + g2(λ)]

ΣPS = exp [Lg1(λ) + g2(λ) + αsg3(λ) + ...]

ΣNLL = exp [Lg1(λ) + g2(λ)]

Should ΣPS/ΣNLL = 1?

No! There are shower-generated NNLL terms still...

Σ
P
S
/Σ

N
L
L
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Numerical NLL accuracy tests 11 / 29

αsL ≡ argument of g1(λ), g2(λ), ...

λ = αsL = −0.5

NLL accurate PanScales showers

for many classes of observables!

also subleading-colour at NLL, spin, ISR, ...

[PanScales ’20,’21,’22,’23,’24...]
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NLL: summary 12 / 29

▶ We “only” need two ingredients:
▶ The correct inclusive rate of emission

up to O(α2
s) (CMW αs scheme)

[Catani et al ’91]

αeff
s = αs

[
1 +

αs

2π
K1

]
▶ The condition that any emission does

not affect other emissions “far” in the
Lund plane



NLL → NNLL 13 / 29

▶ We can relate shower ingredients to
analytic resummations
e.g. [Banfi et al, 1807.11487] (ARES)

▶ We need:
▶ an NLL shower to start with

[PanScales]

▶ inclusive emission rate up to O(α3
s)

[Banfi et al ’18], [Catani et al ’19]

αeff
s = αs

[
1 +

αs

2π
K1 +

α2
s

4π2
K2

]

▶ 2-jet NLO matching
[Hamilton et al ’22]

Σ = σLO(1+
αs

π
C1) exp [Lg1(αsL) + ...]

▶ radiation pattern for soft partons up
to O(α2

s) (i.e. double-soft)
▶ matrix element for hard radiation up

to O(α2
s) (i.e. triple-coll. ≡ B2(z))

terms ∼ αn
sL

n−1
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Double-soft corrections 14 / 29

▶ First time a shower goes demonstrably beyond NLL



Real matrix element 15 / 29

▶ One corrects the shower (ps) acceptance probability to
recover the exact double-soft (ds) matrix element,

Paccept =
|Mds|2∑

h∈hist |Mh
ps|2

▶ PanGlobal: in general 4 histories



Real ME: colour flow & flavour 16 / 29

▶ There are two colour flows: for the emission of a
double-soft pair 1, 2 from the dipole (ab),

|M |2 =
∑

h∈a12b
|M (12)

h |2︸ ︷︷ ︸
F (12)

+
∑

h∈a21b
|M (21)

h |2︸ ︷︷ ︸
F (21)

▶ If the shower over-populates,

F
(12)
ps > F

(12)
ds , swap colour

connection with probability

Pswap =
F

(12)
ps − F

(12)
ds

F
(12)
ps

▶ Same for g → gg vs. g → qq̄



Virtual corrections 17 / 29

▶ Part of the virtuals already covered by K1 (= KCMW),
which gets the correct NLO rate in the soft-collinear region

αs → αeff
s = αs

[
1 +

αs

2π
K1

]
▶ At large angle, y ∼ 0, this is not enough. Correct this,

αs → αeff
s = αs

[
1 +

αs

2π
(K1 +∆K1(y))

]
▶ Related to the fact that the shower does not conserve

kinematics of the parent, y12 ̸= y1̃

∆K1 =

∫
dΦ12/1̃|M12/1̃|

2 −
∫

dΦ12/1̃sc
|M12/1̃sc

|2



Double-soft tests: reals + virtuals 18 / 29

▶ (Shower-dependent) ∆K evaluated and tabulated

∆K(η̄1) → 0 when η̄1 → ∞ (soft-collinear is fine already)

∆K ≡ 0 for PGsdf
β=0



Non-global logarithms @ NSL 19 / 29

▶ Transverse energy in a slice,
∑

iET,i with |y| < 1

▶ Comparison with Gnole [Banfi, Dreyer, Monni ’21]

0.3 0.2 0.1
= sln Et, max

Q

4.0

4.5

5.0

5.5

(P
S)

NS
L/

SL
=

lim s
0

(P
S)

SL
s

SL

|y| < 1
CA=2CF=3, nf=5
2-jet NLO matching

no double-soft

PGsdf
= 0

PG = 0

PG = 1
2

0.3 0.2 0.1
= sln Et, max

Q

|y| < 1
CA=2CF=3
2-jet NLO matching

double-soft, nreal
f =0

PGsdf
= 0

Gnole

0.3 0.2 0.1
= sln Et, max

Q

|y| < 1
CA=2CF=3, nf=5
2-jet NLO matching

double-soft

PGsdf
= 0

PG = 0

PG = 1
2

NSL accuracy tests: energy in a slice



Double-soft: phenomenological impact 20 / 29

▶ Central value only slightly affected by double-soft
corrections

▶ But scale uncertainties greatly reduced!



NLL → NNLL 21 / 29

▶ We can relate shower ingredients to
analytic resummations
[Banfi et al, 1807.11487] (ARES)

▶ We need:
▶ an NLL shower to start with ✓

[PanScales]

▶ inclusive emission rate up to O(α3
s)

[Catani et al 1904.10365]

▶ 2-jet NLO matching ✓
[Hamilton, Karlberg, Salam, LS, Verheyen]

▶ radiation pattern for soft partons up
to O(α2

s) (i.e. double-soft) ✓
▶ matrix element for hard radiation up

to O(α2
s) (i.e. triple-coll. ≡ B2(z))

For event shapes @ NNLL, we only need the integrated quantities!



The drift picture 22 / 29

αeff
s = αs

[
1 +

αs

2π
(K1 +∆K1)

]
▶ The shower does not conserve e.g. the rapidity of the parent

gluon, y1̃ ̸= y12 (assumed to hold in calculating K1)

⇝ average rapidity drift ⟨∆y⟩

▶ Correct the depleted central
region, by adding a total
∆K int

1 =
∫
dy∆K1(y):

∆K int
1 = 2⟨∆y⟩

▶ Note: for event shapes, integrated
quantity is enough at NNLL

∆K1

ln kt

y
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The drift picture: B2, K2 and F 23 / 29

αeff
s = αs

[
1 +

αs

2π
(K1 +∆K1 +Bint

2,PS) +
α2
s

4π2
K2,PS

]
▶ Similar connection with hard-collinear from

[Dasgupta et al. ’21, ’23, ’24]

Bint
2,PS = Bint

2,NLO − ⟨∆y⟩ − ⟨∆ln kt⟩+ β0
π2

12

▶ Inclusive rate correction at O(α3
s)

[Banfi et al. ’18], [Catani et al. ’19]

K2,PS = Kanalytic
2 − 4β0⟨∆lnkt⟩

▶ Similarly for multiple emission constraint F
▶ Proof of drift equivalence in appendices of

[2406.02661]



NNLL tests: αs → 0 limit 24 / 29
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NNLL: preliminary pheno 26 / 29

• Some LL/NLL showers require αs(MZ) ∼ 0.130 to agree with data



NNLL: impact of tuning 27 / 29
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Summary & outlook 28 / 29

▶ Shower accuracy has lagged behind for 40 years, compared to the
precision in other contexts

▶ NLL now established [PanScales], [Alaric], [FHP], [Apollo], [Deductor],...

▶ Major steps towards NNLL accuracy (for now in e+e−):
▶ Double-soft corrections in PanGlobal

▶ Drift picture & NNLL ingredients equivalence “theorems”

⇝ NNLL for event shapes in PanGlobal!

▶ Work on triple-collinear see e.g. recent [van Beekveld et al, 2409.08316]

▶ Double-soft & drifts for ISR, as well as for PanLocal β = 1/2

▶ NLO matching in pp [24XX.YYYY]

▶ Quark masses [2XXX.YYYY]

▶ ...



Backup


	Logarithmic accuracy in the PanScales parton showers
	Backup

