Search for neutrino emission in gamma-ray flaring blazars with the ANTARES telescope

Agustín Sánchez Losa (IFIC)

VLVvT workshop

ANTARES Collaboration

Erlangen, 12-14 October 2011

VLVnT11

VLVvT workshop

VLVnT11

The ANTARES Experiment

Agustín Sánchez Losa - ANTARES Collaboration

© François Montanet

Gamma Ray Flaring Blazars

- AGN Blazars are good candidates for UHECR:
 - p-γ and p-p interactions in high photon densities offer a strong correlation between gamma rays and neutrinos
- Available gamma-ray data for the end of 2008:
 - No TeV flares found with HESS, MAGIC or VERITAS
 - But many sources monitored by Fermi LAT show important time variability

Time-Dependent Analysis

- Flares time info from gamma ray telescopes
 - Space-Time coincidences reduce significantly the background
 - Discovery potential is improved over a time integrated search
- The method: an unbinned search using likelihood ratio
 - Only one free parameter, n_{sg} , because of triggered search
 - Optimization: minimum neutrino flux to have a 5 sigma discovery

$$\lambda = \sum_{i=1}^{N_{ev}} \log \frac{P(x_i \mid H_{sg+bk})}{P(x_i \mid H_{bk})} = \sum_{i=1}^{N_{ev}} \log \frac{\frac{n_{sg}}{N_{ev}} P_{sg}(\alpha_i, \delta, t_i) + \left(1 - \frac{n_{sg}}{N_{ev}}\right) P_{bk}(\alpha_i, \delta)}{P_{bk}(\alpha_i, \delta)}$$

$$MC \qquad \nabla -ray LC$$

Signal : $P_{sg}(\alpha_i, \delta, t_i) = P_{dir}(\alpha_i, \delta) \times P_{time}(t_i)$
Background : $P_{bk}(\alpha_i, \delta, t_i) = (\Omega(\alpha_i, \delta))^{-1} \times P_{time}(t_i)$
data data
Agustín Sánchez Losa - ANTARES Collaboration

Selection of events

• Angular resolution: 0.4 ± 0.1 degree

- Estimated from MC
- Constrained using data
- Comparable to IceCube besides size difference (advantage of water over ice)

Neutrino events selection:

- $\Lambda > -5.4$ (track's fit quality parameter)
- β < 1° (track's error estimate)
- $\theta > 90^{\circ}$ (only upgoing events)

Agustín Sánchez Losa - ANTARES Collaboration

1'0

Distribution used as time PDF for background once normalized

Performance

Averaged number of events required for a 5σ discovery (50% prob) produced in one source as a function of the width of one flare period: Improvement by a factor 2-3 with respect to a time integrated analysis

Flare identification

- Identification of the flare periods on AGNs from Fermi LAT data:
 - 1. Gamma Ray sources: selection of variable and energetic blazars (10 sources)
 - 2. 1-day binned light curved (fit files from Fermi website)
 - 3. Flares as the high emission states periods: robust and simple method
 - Light curve baseline & sigma: (linear fit and Gaussian fit → remove points above baseline + sigma) x 3 → Gaussian fit
 - <u>Flare prior</u>: (flux - error_flux) > (baseline + 2*sigma) && flux > (baseline + 3*sigma)
 - <u>Flare duration</u>:

LV_VT

orksho

LVnT11

Add all consecutive points to prior for which (flux - error_flux) > (baseline + sigma) Add ± 0.5 days to each flare (due to 1-day binned LC and uncertainties in models)

Plots: Damien Dornic (IFIC-Spain)

9

AFAUITT

Results for 2008 data (*)

source name	ANTARES visibility	time PDF (MJD+54000)	Live time (days)	Ν(5σ)	N _{obs}	Fluence U. L. GeV/cm ² (**)
0208-512	1.0	712-5, 722-4, 745-7, 750-2, 753-7, 764-74, 820-2	8.8	4.5	0	2.8
0235+164	0.41	710-33, 738-43, 746-64, 766-74, 785-7, 805-8, 810-2	24.5	4.3	0	18.7
1510-089	0.55	716-9, 720-5, 726-35, 788-90, 801-3	4.9	3.8	0	2.8
3C273	0.49	714-6, 716-8, 742-5	2.4	2.5	0	1.1
3C279	0.53	749-51, 787-809, 812-5, 817-21, 824-6	13.8	5.0		8.2
3C454.3	0.41	713-51, 761-5, 767-9, 784-801	30.8	4.4	0	23.5
OJ287	0.39	733-5, 752-4, 760-2, 768-70, 774-6, 800-2, 814-6	4.3	3.9	0	3.4
0454-234	0.63	743-5, 792-6, 811-3	6.0	3.3	0	2.9
WComae	0.33	726-9, 771-3, 790-2, 795-7, 815-7	3.9	3.8	0	3.6
2155-304	0.68	753-5, 766-8, 799-801, 828-30	3.1	3.7	0	1.6
(*) 61 days						

(**) Neyman

Number of events

2 1.8

1.6

1.2

Results for 3C279

Zenith: 39

Fit on 7 line

Zenith: 39.6

Fit on 7 line(s)

37238 Frame 45211

1-12 Physics Trigger

oisy channels treated

ger bits 80002020

Nov 18 21:49:55 2008 UTC

Run 37238 Frame 45211 Tue Nov 18 21:49:55 2008 UTC Trigger bits 80002020

Line 1-12 Physics Trigger

Noisy channels treated

1 2 3 4 5 6 photons

1 neutrino compatible with the timespace distribution ($\Delta \alpha = 0.56^{\circ}$) of 3C279 with probability 10% after trials

Compatible with background fluctuations

Plots: BaimAgre Doonlist (diffet i 6 pain) / ANTARES Agustín Sánchez Losa - ANTARES Collaboration

Summary and future

SUMMARY: Flare analysis of ANTARES 2008 data

- Transient sources analysis more sensitive than a standard point source search
- Study of a selection of 10 very bright and variable Fermi LAT blazars
- First time-dependent search for cosmic neutrinos using ANTARES data (end 2008)
- Most significant correlation of a flare with 3C279 (10% probability)

FUTURE: Data analysis in progress

- More than 3000 neutrino candidates detected by ANTARES since 2008
- Very important flares detected by Fermi the last 2 years
- Ongoing analysis of the most important flares (around 40 flares)
- Application of a maximum likelihood blocks algorithm for light curve denoising in future analysis

