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Introduction
°

Muon energy (loss)

@ Low energy (E, < O(10 TeV)): track contained in detector volume
e Track length — energy (not in this talk)

@ Minimum ionizing E,, < O(10 TeV)
@ Linear energy loss for £, > O(10 TeV)
@ Stochastics
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Muon energy (loss)

@ Low energy (E, < O(10 TeV)): track contained in detector volume
e Track length — energy (not in this talk)

@ Minimum ionizing E,, < O(10 TeV)
@ Linear energy loss for £, > O(10 TeV)
@ Stochastics

Assume track geometry fit independent from energy reconstruction



Introduction
°

Muon energy (loss)

@ Low energy (E, < O(10 TeV)): track contained in detector volume
e Track length — energy (not in this talk)

@ Minimum ionizing E,, < O(10 TeV)
@ Linear energy loss for £, > O(10 TeV)
@ Stochastics

Depth dependent ice properties:
@ absorption length A\a(2)
@ effective scattering length Ae(2)



Top-Down reconstruction
°

Top-Down: Comparing to database of MC events

@ Create a large database of MC events

@ For each given event, select "similar" events from MCDB, using simple criteria
e E.g. similar COG, similar track fit direction

@ Quantify "similarity" using a (product of) likelihood(s), based on e.g.:

@ N¢p (Poissonian)
@ hit time distribution (KS)
e distribution hit distance to track (KS)

@ Reconstructed energy is the "true" energy of the most likely MC event

Authors: Jan-Patrick Hil3(2008) and Matthias Schunck (2009-2011)



Top-Down reconstruction
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Top-Down: Likelihood
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Top-Down reconstruction
oce

Top-Down: preliminary test result
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Poissonian Ansatz
o

Poissonian Ansatz

Given:
@ a muon track m = (Xm, Ym, Zm, Om, ém, Em, . ..)
@ a DOM k = (X, Yk, Zk, - - -)
@ assumptions about energy loss and light yield
@ a light propagation model

Define:
ikm =  expected number of photoelectrons from muon m at DOM k
Qx = measured number of photoelectrons at DOM k
Ak o—tkm
e
Lim = 7Nkm
k!
Lym = —109(Lkm) = pikm — 9k 109(14km) + 10g(qk!)
Lo = > {mkm— 9k 10g(1km) + log(ax!)}
k

Assuming a fixed track and uniform light emission / energy loss scaling paramter 7:

HKkm = TIHkm,geo

_ 2k Gk
Zk Hkm,geo

Trivial fit:



Analytic
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Analytic (mue, muex): Photons per track length

Average optical parameters between track and
DOM:
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)\a,e ‘ri_rl‘ r; A":Y,E(r)

Close by (no scattering):

exp(—d/Aasinfc).
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Analytic
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Analytic (mue, muex): Photons per track length

Far away (diffuse):
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Analytic
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Analytic (mue, muex): Photons per track length

o

o

Stitched together:

Hitam = " 27 sin Oc

d“”)\/ dtanh \/d/A

_ i
A= 3( sin 90 Ap

Aol e TN AL 'ul' e IAAN™ AAA 4\
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Analytic
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Analytic (mue, muex): Photons per track length

x104 energy around 10*12 GeV
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Using tabulated ice information
°

Photonics, photorec

4-dimensional photonics table of expected light yield and arrival time distributions,
based on a ray tracing simulations with a realistic ice model:

@ zenith angle

@ distance to DOM

@ depth of the DOM

@ azimuth angle (around track)

@ (length)
Table generated for muons with constant dE/dx (“light saber model”).
“PhotorecEnergyEstimator” uses this table to determine .
Pro: taking layered ice structure properly into account (no averaging)

Contra(1): spoiling it with coarse binning (table needs to fit in RAM)
Contra(2): light saber model ignores stochastics

Authors: Sean Grullon, Gary Hill, David Boersma (2007-2008)
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Using tabulated ice information
°

Truncated Energy reconstruction

Attempt to improve photorec resolution by removing outliers — less sensitive to
stochastics. Two variations:

@ BINS method
@ “Bin” the detector by defining planes perpendicular to the track
@ Use only DOMs within 10-80m from the track
o Determine dE /dx for each “bin” separately
@ Remove bins with top 40% of dE /dx values
o (Keep at least 3 bins)
o Recompute dE /dx with DOMs from remaining bins

@ DOMS method

@ Use only DOMs with 60m from the track

o Determine dE/dx for each DOM individually
o Remove DOMs with top 50% of dE /dx values
o (Keep at least 8 DOMs)

o Recompute dE /dx with remaining DOMs

]

Author: Sandy Miarecki (2011)
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Using tabulated ice information
°

Plot dE/dx vs. MMC energy. ’A\ ﬂ
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Splined and segmented
°

Millipede: using splines and NNLS

Idea:

@ a spline fit to the photonics table (for cascades), using spline coefficients obtained
from a fit to a very finely binned photonics table.

@ segment the track in short segments (e.g. 15m) and reconstruct the dE/dx for
each segment individually

To find the energy loss in each of n segments, causing charges N in m DOMs, solve

this (NNLS):
Bi(x) Ba(xa) -+ Ba(xa) E Ny
Bi(x2) Ba(x2) -+ Ba(x) Ex _ No
Biln) Balxn) - Bulm) ) \ En N

B;(x;): predicted photon distribution at x; from a shower with reference energy loss at
segment i

E;: energy loss at each segment/shower

N;: measured photon counts

Author: Nathan Whitehorn (2011)
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Splined and segmented
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High Energy Performance
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Splined and segmented
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Low Energy Performance
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Splined and segmented
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Conclusions

We have quite a number of interesting energy loss reconstructions in IceCube:
@ photorec: old
@ truncated photorec: current
@ mue/muex: current
@ millipede: future
@ top-down: interesting concept
Skipped: data-derived dE/dx reconstruction (DDDDR) by Patrick Berghaus.
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