

"Doing astronomy by looking downward"

"Ultra High Energy Neutrinos with JEM-EUSO"

Andrea Santangelo*

Advanced Studies Institute, Riken, Wako Kepler Center for Astro and Particle Physics, Eberhard-Karls-Universität, Tübingen

* Global Coordinator of the JEM-EUSO Collaboration

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

Outline of the presentation

I. The JEM-EUSO Mission Why from space and How? What is JEM-EUSO? Status of the mission

II. The science case: the Neutrino Universe at UHE Why neutrinos at UHE? Perspectives for JEM-EUSO

III. Conclusions

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

I. The JEM-EUSO mission (...to explore the UHE Universe)

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

$UHE \implies E > (5-6) \times 10^{19} eV (~10^{16} keV)$

Highest energies: The GZK Effekt

Greisen (1966) and, independently Zatsepin & Kuz'min (1966)

INCHICI COMOI-10

Kenneth Greisen

George Zatsepin

Vadim Kuzmin

 $E_{\rm th} = \frac{2m_N m_\rho + m_\rho^2}{4\rho} \gg 5 \times 10^{19} {\rm eV}$

 $p + g \rightarrow n + \rho^+$

 $p + q \rightarrow p + p^0$

 $p + g \rightarrow p + e^+ + e^-$,

Attenuation length, a limited horizon

 $A + hn \rightarrow (A-1) + N$ $A + hn \rightarrow (A-2) + 2N$ $A + hn \rightarrow A + e^{+} + e^{-}$

E ~ 2*10²⁰ eV (nuclei)

 $\Delta E_n \approx 20\% E_n$ $/_{int} \gg 10 Mpc$ $L_{Hor}^{GZK} \gg 100 \text{ Mpc}$

Nagano & Watson, Rev. Mod. Phys, Vol. 72, N° 3 (2000)

Photodisintegration (Puget et al., 1976) Pair production (Blumenthal, 1970)

GZK effect? May be ...

A key result from Auger

The Auger Collaboration (2007)

Ang. Sep. $\psi < 3.1^\circ~$, z < 0.018~(75~Mpc) and E > 56~EeV

Observation anisotropy of UHE particles at E>5x10¹⁹ eV Enables Particle Astronomy The Extreme Universe Space Observatory on-board the Japan Experiment Module (JEM) of the ISS

2001-2004

Heritage of the ESA EUSO study

JEM EUSO Collaboration

- Japan, USA, Korea, Mexico, Russia
- Europe: Bulgaria, France, Germany, Italy, Poland, Slovakia, Spain, Switzerland
- 77 Institutions, more than 250 researchers
- RIKEN: Leading institution

Main Scientific Objectives (1)

- Main Objective: Astronomy and Astrophysics through the particle channel
 - Identification of sources by high-statistics arrival direction analysis (+multi-wavelength!)
 - Measurement of the energy spectra of individual sources (spectral shape, flux, power)

Understand and constrain acceleration and emission mechanisms

Physics and Astrophysics at E>5. × 10¹⁹eV

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

Exploratory Scientific Objectives (2)

- Exploratory Objectives: new messengers
 - Discovery of UHE neutrinos by neutrino
 discrimination and identification via X₀ and X_{max}
 - Discovery of UHE Gammas by discrimination of X_{max} due to geomagnetic and LPM effect
- Exploratory Objectives: magnetic fields
 - Constrains on the galactic and local extragalactic fields

High discovery potential; tests of new physics models

Take home messages:

Physics and Astrophysics at E>5. × 10¹⁹ eV

- But also... Explore new physics in the energy range E≈1 10²¹eV
- Highest statistics and therefore largest exposures at extreme energies

$$E \gg 10^{20-21} eV$$

Lower Energies are important for overlapping with current generation observatories with significant statistics... $E < 5 \ 10^{19} eV$

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

Observational Technique: fluorescence from space

J. Linsley

N₂*

Y. Takahashi

GTU time units

a) Fluorescence

b) Scattered Cherenkov

c) Direct (diffusively reflected Cherenkov)

1 GTU = 2.5 Msec

Back. = $500 / (m^2 \text{ sr ns})$

FAST SIGNAL

duration » 50 - 150 ms

Simulation of the light profile observed at the entrance pupil (above) and throught the instrument using the ESAF code

Kepler Center-Tü

Proton Shower (60 deg, 10²⁰eV)

www.videomach.com

Result of end-to-end simulation

Two advantages: 1. Monitored area

» few 10^{12} tons

 $A_{geo}^{Nadir} \gg 1.3 \ 10^5 \ km^2$

 $A_{aeo}^{Tilted} \gg 1. \ 10^6 \ km^2 [@40^\circ]$ geo

Tuebingen

... and uniform exposure

Japanese Experiment Module_ "Kibo" July 2009

51.6°

きぼう, Hope

envelope:1.85m ×1.0m ×0.8m

Mission aspects have been successfully studies by JAXA and RIKEN

Parameter	Value
Launch date	JFY 2016
Mission Lifetime	3+2 years
Rocket	H2B
Transport Vehicle	HTV
Accommodation on JEM	EF#2
Mass	1938 kg
Power	926 W (op.) 352 W (non op.)
Data rate	285 kbps (+ on board storage)
Orbit	400 km
Inclination of the Orbit	51.6°
Operation Temperature	-10° to 50°

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

Conceptual View of the JEM-EUSO Telescope

Connects to the JEM/EF EFU

International Role Sharing

The UV Telescope Parameters

Parameter	Value
Field of View	±30°
Monitored Area	>1.3×10 ⁵ km ²
Telescope aperture	≥2.5 m
Operational wavelength	300-400 nm
Resolution in angle	0.075°
Focal Plane Area	4.5 m ²
Pixel Size	<3 mm
Number of Pixels	≈3×10⁵
Pixel size on ground	≈560 m
Time Resolution	2.5 µs
Dead Time	<3%
Detection Efficiency	≥20% —

+ Optics Throughput

BBM of the Optics (Protypes)

Tested performances meet already the requirements (or are close to it)

X in mm

large diameter Fresnel lenses manufactured in Japan and tested in the US at the University of Alabama (Huntsville) and at MSFC (NASA)

Detector and electronics

- MAPMT-64
- ASIC Spaciroc
- Electronic Cell Board
- 137 PDM 1st trigger and readout
- CCB 2nd trigger

From 9.6 GB/s to 3 GB/day on the entire FS

PDM Bread board model integrated at RIKEN

Normalised Aperture: Efficiency

Kepler Center-Tü

Instantaneous Aperture

K.Shinozaki et al., 2011

Annual Exposure (....Nadir)

K.Shinozaki et al., 2011

Why JEM-EUSO? Large exposure + Full sky coverage

II. Science case: JEM-EUSO and UHE neutrinos

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

Andrea Santangelo, Kepler Center-Tü

Old EUSO plot by Bottai et al., 2003

Cosmogenic Neutrinos

 $\mathcal{P}^{\pm} \longrightarrow \mathcal{M}^{\pm} + \mathcal{N}_{m}(\overline{\mathcal{N}}_{m})$

• Engel, Seckel, Stanev 2001

 $p + g_{CMB}$

- Kalashev, Kuzmin, Semikoz, Sigl 2002
- Fodor, Katz, Ringwald, Tu 2003
- VB, Gazizov, Grigorieva 2003

Maximal Energy, Composition, Evolution of sources... is it really feasible?

Andrea Santangelo, Kepler Center-Tü

Berezinsky & Zatsepin, (1969, 1970) Berezinsky (2005)
Bittermann, 2010

The Zoo of neutrino models

The key concept

(CC) $n_1 N \rightarrow l + hadrons$ (NC) $n_1 N \rightarrow n_1 + hadrons$

Neutrino shower simulation

Horizontally incident neutrinos Survival prob. to come in FOV Neutrino: ~exp(-0.001) Proton: ~exp(-1000) for 10²⁰ eV

CONEX code used for shower simulation in atmosphere

Neutrinos vs. Protons: X_{max}

Distribution of X_{max} for protons and neutrinos for $E=10^{20} \text{ eV}$ and $\theta=85^{\circ}$ (First Peak of the shower profile)

Profiles

First peak from the hadronic and the em part of the shower, second and more from the em part.

* Landau Pomeranchuk Migdal

Profile of the shower for horizontal electron neutrinos at $E=10^{20} \text{ eV}$ for four different altitudes

Bittermann, 2010

Discrimination of Neutrinos vs Protons

Xmax

X1 initial point

Upper limits on neutrino fluxes

New Physics from Neutrinos?

Erlangen, October 12-14, 2011

VLVnT 11, Friederich-Alexander-Universität Erlangen-Nürnberg

Neutrino cross sections

Black Hole production

Feng & Shapere, 2002

EW instanton effects

Bezrukov et al., 2003a, 2003b

Ringwald, 2003

p-brane production

Anchordoqui, Feng and Goldberg, 2002

Exchange of KK modes

Kachelriess & Plümacher, 2000 Andrea Santangelo, Kepler Center-Tü

Han & Hooper, 2004

Bittermann, 2010

The Zoo of neutrino models

Angular Resolution

End to end simulations show that the requirement is met. T. Mernik et al., 2011 Andrea Santangelo, Kepler Center-Tü

End to end simulations show that the requirement is met.

 $\Delta X_{max} < 70 gr/cm^2$ (Requirement $\Delta X_{max} < 120 gr/cm^2$) OK

T.Mernik et al., 2011

- Science: UHECR → Evidence for GZK, Indication for Anisotropy, hints of sources but *puzzling scenario* (PAO, HiRes, TA). No UHE neutrinos discovered...
- Current generation of UHE Observatories is too small: We need next generation to solve the puzzle and to explore the unknown → Neutrinos, Photons, new physics
- Breakthrough can come from space: Large and uniform exposures of the entire sky, JEM-EUSO is the pathfinder with likely outstanding science output.
- JEM-EUSO will have enough exposure and reconstruction capability at 3x10¹⁹ eV to overlap with current generation observatory.
- The JEM-EUSO duty cycle and cloud impact have been thoroughly estimated to be $\eta \approx 20\%$ and $\kappa > 70\%$.

- JEM-EUSO is designed to have a annual exposure about 9xAuger at 10²⁰ eV in nadir mode and 28xAuger at the highest unexplored energies in tilt mode.
- Simulation shows that JEM-EUSO can distinguish neutrino- from proton-induced showers with high confidence on the basis of X_{max} , X_0 and the shower shape.
- Simulations (in nadir mode) shows that the energy, angular and X_{max} resolution meet the requirements.
- JEM-EUSO is feasible:
 - Phase A/B studies of JAXA and of the Collaboration confirms it
 - Prototyping phase has been started. Tests on the key mission elements have been conducted.
- Launch in 2017 (?) Stay tuned for surprises...

Comparison with current observatories

Observatory	Aperture km ² sr	Status	Start	Lifetime	Duty cycle	Annual Exposure km² sr yr	Relative to Auger
Auger	7,000	Operations	2006	4 (16)	1	7000	1
ТА	1,200	Operations	2008	2 (14)	1	1,200	0.2
TUS	30,000	Developed	2012	5	0.14	4,200	0.6
JEM-EUSO (E≈10 ²⁰ eV)	430,000	Design	2017	5	0.14	60,000	9
JEM-EUSO (highest energies) Tilted mode 35°	1,500,000	Design	2017	5	0.14	200,000	28

Let me open a parenthesis: How do we detect UHE particles? (in a nutshell...)

Liège, October 4, 2011

Université de Liège, IFAP, Institut d'Astrophysique et Géophysique

Extend Air Shower

10-100 km 30-300 μs The primary interaction can be hadronic. A number of secondaries mainly pions are generated. These give rise to further hadronic interactions

Hadronic Cascade Charged pions→muons

Electromagnetic Component

Photons produce e-pairs and Compton electrons, which produce photons via bremsstrahlung

Two types of light are produced:

- Fluorescence photons (isotropic)
- Cherenkov photons (beamed)

Viewed from a distance, an EAS appears as a *luminous disc moving at the speed of light*. Its luminosity increases up to a maximum and gradually fades

The number of charged particles (mainly e+ and e-) can be parametrized by the Gaisser-Hillas function

$$N_{e} = N_{max} \left(\frac{X - X_{0}}{X_{max} - X_{0}} \right)^{\frac{X_{max} - X_{0}}{70}} exp \left(\frac{X - X_{0}}{10} \right)^{\frac{X_{0}}{70}} exp \left(\frac{X -$$

71

X₀ is the depth of the first interaction

X_{max} is the depth of the maximum (Energy, particle type)

X is the cumulate slant depth, in g/cm² (thickness of air traversed)

Open Questions remain

- Is this the GZK suppression? Or are the sources running out of fuel...
- Do we see a recovery of the spectrum ?
- Has the spectrum an end? Which is the maximum energy
- Do we have a high statistics description of the spectrum?
- Requirement: A high precision measurement of the UHECR spectrum around and beyond the "GZK" feature

Relevance of Auger's result:

- (Bad news for current observatories) it implies a very low flux:
- $\frac{1 particle / km^{2} / sr / century}{1 particle / km^{2} / sr / millennium?} E > 6 (10^{19} eV)$
- (Good news) It *limits the horizon* and gives us the possibility to find local sources:
 - Large angular separation
 - Smaller magnetic deflections

III. Performances

Liège, October 4, 2011

Université de Liège, IFAP, Institut d'Astrophysique et Géophysique

Key observation and instrument requirements

Observation area (Nadir)	$\geq 1.3 \times 10^{5} (H_{orbit}/400[km])^{2} km^{2}$
Arrival direction determination accuracy	$\leq 2.5^{\circ}$ (at <i>E</i> =10 ²⁰ [eV] and 60° zenith angle)
Energy determination accuracy	\leq 30% (E=10 ²⁰ [eV] and 60° zenith angle)
X _{max} determination accuracy	\leq 120 [g/cm ²] (E=10 ²⁰ [eV] and 60° zenith angle)
Energy threshold	$\leq 5.5 \times 10^{19} [eV]$
Duty cycle	≥ 17%
Lifetime	> 3 years (goal: > 5 years)

Université de Liège, IFAP, Institut d'Astrophysique et Géophysique

Which is the annual exposure?

- Of course it depends on the zenith angle and energy...
- It is determined by three factors: TA h K

 $TA \rightarrow Trigger Aperture$

Determined by the trigger efficiency

 $h \rightarrow duty \ cycle$ Determined by the background (and operation)

 $k \rightarrow cloud \ impact \ Determined by the cloud$ coverage

P.Bobik et al., 2011 Duty cycle estimation

defined as the fraction of time in which the nightglow background doesn't hamper EAS observation

- Based on the Universitetsky Tatiana satellite G. K. Garipov et al. 2005a, 2005b
- Scaling of the UV intensity from Tatiana's to the ISS orbit

The JEM-EUSO duty cycle has been estimated for a set of Solar Zenith angles assuming an UV background < 1500 photons/(m² ns sr)

P. Bobik et al., 2011

Solar zenith angle (deg.)	Duty cycle (%)		
108	22.2		
109	22.1		
110	21.9		
111	21.7		
112	21.5		
113	21.3		
114	21.0		
115	20.6		
116	20.3		
117	19.9		
118	19.5		
119	19.0		
120	18.4		

Duty cycle (2)

Note that: Selecting bckg < 1500 photons/(m² ns sr) with its relative occurrence gives a trigger efficiency curve equivalent to an average bckg of 500 photons/(m² ns sr)

We can also operate at higher background rates (higher energies)

Cloud Coverage

F. Garino et al., 2011

Cloud top

		<3 km	3-7 km	7-10 km	>10 km
pth	τ>2	17.2	5.2	6.4	6.1
al De	$\tau \approx 1-2$	5.9	2.9	3.5	3.1
<i>Pptica</i>	τ≈ 0.1-1	6.4	2.4	3.7	6.8
\mathbf{C}	τ ≈ 0.1	29.2	<0.1	<0.1	1.2

Occurence of clouds (in %) between 50° N and 50° S on TOVS database. The matrix Optical depth vs. Cloud-top altitude is shown. *Confirmed by ISCCP, CACOLO & MERIS database* L. Saez et al., 2011, K. Shinozaki et al. 2011

Cloud-impact to trigger efficiency $E > 5 \cdot 10^{19} eV$ Cloud top

th		<3 km	3-7 km	7-10 km	>10 km
Optical Dep	τ>2	90%	65%	35%	20%
	$\tau \approx 1-2$	90%	70%	45%	25%
	$\tau \approx 0.1$ -1	90%	80%	75%	70%
	$\tau \approx 0.1$	90%	90%	90%	90%

Average efficiency^{*} = 82% above 50 EeV

*A spectral distribution dN/dE << E⁻³ is assumed

L. Saez et al., 2011 K.Shinozaki et al. 2011

Basic conclusion:

In more than 70% of the cases the UV track including Xmax is observable

*Different geometrical conditions for optically thick or optically thin clouds

At the highest energies: recovery in the spectrum

tangelo, Kepler Center-Tü

- We expect to discover several tens of clusters

- Can observe the whole sky

Test of the GZK effect

Other exploratory objectives

From Particle Astronomy: - Galactic and local intergalactic Magnetic Fields

Exploratory Science Objectives: - Neutrinos at UHE - Photons at UHE - Fundamental Physics

Liège, October 4, 2011

Université de Liège, IFAP, Institut d'Astrophysique et Géophysique

- Science: Evidence for GZK, Indication for Anisotropy, hints of sources but *puzzling scenario* (PAO, HiRes, TA)
- Current generation of UHE Observatories is too small: We need next generation to solve the puzzle and to explore the unknown (Neutrinos, Photons, new physics)
- Breakthrough can come from space: Large and uniform exposures of the entire sky, JEM-EUSO is the pathfinder with likely outstanding science output.
- JEM-EUSO will have enough exposure and reconstruction capability at 3x10¹⁹ eV to overlap with current generation observatory.
- The JEM-EUSO duty cycle and cloud impact have been thoroughly estimated to be $\eta \approx 20\%$ and $\kappa > 70\%$.

- JEM-EUSO is designed to have a annual exposure about 9xAuger at 10²⁰ eV in nadir mode and 28xAuger at the highest unexplored energies in tilt mode.
- To reach/approach 1ML integrated exposure it is *necessary to operate the mission also in tilted mode.*
- Simulations in nadir mode shows that the energy, angular and X_{max} resolution meet the requirements.
- JEM-EUSO is feasible:
 - Phase A/B studies of JAXA and of the Collaboration confirms it
 - Prototyping phase has been started. Tests on the key mission elements have been conducted.
- Launch in 2017 (?) Stay tuned for surprises...

- Science: Evidence for GZK, Indication for Anisotropy, hints of sources but *puzzling scenario* (PAO, HiRes, TA)
 - Current generation of UHE Observatory is too small
 - We need next generation
 - Exploration of the unknown: UHE neutrinos, photons and new physics
- Breakthrough can come from space:
 - Large exposures, uniform exposures of the entire sky
 - JEM-EUSO is the pathfinder with potentially outstanding science output.