A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope

A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics Laboratory H.O.U

VLV_VT workshop 5th International Workshop on Very Large Volume **Neutrino Telescopes**

SN (GARCHING) Model

L. Hüdepohl, ¹ B. Müller, ¹ H.-T. Janka, ¹ A. Marek, ¹ and G. G. Raffelt²

DOI: 10.1103/PhysRevLett.104.251101

In this study we consider only the $\bar{\nu}_e$ flux and the reaction $\bar{\nu}_e + p \rightarrow e^+ + n$

Detector Geometrical Layout

154 Towers with a mean horizontal distance of 180m Each Tower consists of 20 bars, 6m in length and 40m apart One MultiPMTOM at each end of the bar.

Detectors Footprint

31 3" PMTs (~30% max QE) inside a 17" glass

sphere with 31 bases (total ~6.5W)

- **Cooling shield and stem**
- **Single vs multi-photon hit** separation
- Large (1260 cm²) photocade area per OM
- **•** First full prototype under test

$$
\frac{d\Phi_{\bar{v}_e}}{dE_{\bar{v}_e}}(E_{\bar{v}_e},d) = \frac{1}{4\pi d^2} \int_0^T \frac{L(t)}{\langle E_{\bar{v}_e} \rangle(t)} f_{a(t),\langle E_{\bar{v}_e} \rangle(t)} dt
$$
\nTime Integrated Differential Flux
\n(d: SN distance in kpc)
\nnumber of \bar{v}_e / cm² / MeV
\nnumber of \bar{v}_e / cm² / MeV
\n
$$
\rho_{int} = \rho_{target} \cdot \int_0^{\infty} \frac{d\Phi_{\bar{v}_e}(E_{\bar{v}_e})}{dE_{\bar{v}_e}} \sigma(E_{\bar{v}_e}) dE_{\bar{v}_e}
$$
\n
$$
V_{eff} = \left\langle \frac{n_{obs}}{n_{gen}} \right\rangle V_{gen}
$$
\n
$$
V_{ther}
$$
\n
$$
V_{gen}
$$
\n
$$
V_{other}
$$
\n
$$
V_{eff}
$$

Significance Level of discovery:

Assuming that μ_{bck} is the expected number of background events then for 5 σ discovery the **minimum number of observed events, m**, is defined as:

$$
1 - \sum_{i=0}^{m} \frac{\mu_{bck}^{i} e^{-\mu_{bck}}}{i!} < 1 - erf\left(\frac{5}{\sqrt{2}}\right)
$$

Assuming Gaussian statistics:
$$
\frac{m - \mu_{bck}}{\sqrt{\mu_{bck}}} > 5 \quad but \ \mu_{bck} \equiv \mu_{bck} (T) \Rightarrow m \equiv m(T)
$$

General Condition:
$$
\frac{N_{obs}(T) - \mu_{bck}(T)}{\sqrt{\mu_{bck}(T)}} = \frac{S(T)}{\sqrt{\mu_{bck}(T)}} = \max_{\mathbf{N} \neq \mathbf{N} \text{ times}} \frac{d}{\sqrt{\mu_{bck}(T)}} = \frac{10kpc}{\sqrt{10kpc}}
$$

$$
S(T) = \int_{0}^{T} s_0 e^{-\frac{t}{t_0}} dt : \frac{d}{dt} \left(\frac{S(T)}{\sqrt{\mu_{bck}(T)}}\right) = 0 \Rightarrow T = \frac{t_0}{2} \left(e^{\frac{T}{t_0}} - 1\right) \approx 2.95s
$$

Garching Model: t0=2.35

Background-I: Only K⁴⁰ Decays

Signal: SN @ 10 kpc **Inverse Beta Decay (IBD):** $\overline{v}_e + p \rightarrow e^+ + n$

Multiplicity>4 Multiplicity>2

Multiplicity>6

Background Rejection-I: K⁴⁰ Decays

Background-II: Atmopsheric muons

Expected Number of Εvents in a full WPD detector (6160 Oms) in T=2.95s

> **Atmospheric muonsseems to be tough guys !**

Background Rejection-II: Atmospheric muons

• **94% of the background due to atmospheric muons(i.e. active Oms with multiplicity >5) has at least one neighbor OM with multiplicity >2** • **Only 7% of the signal has at least one neighbor OM with multiplicity >2**

Simulate the Cherenkov Light Emisionand the photoelectron production on the small PMTs photocathode due to:

- 1. SN neutrinos (following the GARCHING Model) interacting inside the KM3 full detector and producing positrons in the vicinity of the Oms.
- 2. K⁴⁰ decays producing electrons and gammas
- 3. Atmospheric muons
- e.g. 10⁷ fully simulated signal events, 10^{11} fully simulated K40 background events and 10^6 fully simulated atmospheric muon tracks

Apply the signal selection criteria for each optical module and estimate:

- a) the number of SN induced events (OMs passing **Certain Selection Criteria**) for T=2.95s as a function of the SN distance
- b) the number of background induced events (due to K^{40} and atmospheric muons) for T=2.95s

 2.52 ± 19.06 21.40

Estimate the SN distance for which the observed number of events (on top of the expected background) corresponds to 5σ discovery, e.g.

OM Multiplicity > 5 **Q-Threshold** = b **Number of PMTS with Q>Q-Threshold** > c **Neighbors with multiplicity greater than 2** < 1

$$
\mu_{bck} = 2.53 + 18.96 = 21.49
$$
\n
$$
1 - \sum_{i=0}^{m} \frac{\mu_{bck}^{i} e^{-\mu_{bck}}}{i!} < 5.96 \cdot 10^{-7} \Rightarrow m = 47 \Rightarrow \mathbf{N_{SN}^{5\sigma}} \sim 25.5
$$
\n
$$
\frac{\mathbf{N_{SN}^{10kpc}}}{\mathbf{N_{SN}^{5\sigma}}} = \left(\frac{d_{\max}}{10kpc}\right)^2 \Rightarrow \mathbf{d_{max}} = \left(\frac{147.5}{25.5}\right)^{1/2} \cdot 10kpc \sim 24 \text{kpc}
$$

The background rejection criteria are based on the PMT waveform amplitude/charge Can the Time over Threshold digitization electronics provide the necessary Information?

Pulse simulation

μ

Background Rejection Criteria

Dmax=23 kpc for 5 σ discovery

Livermore model \rightarrow ~30 kpc Icecube: dmax=50 kpc (80 strings) (2000 events) 36.9 (DC) (13 events)

Summary

SN explosions within our Galaxy can be detected by an Underwater Neutrino Telescope .

Preliminary results for the Garching model without oscillations, indicate that a maximum distance of ~ 23 kpc for 5σ significance level can be reached

Further Studies

- **Other models for SN collapse (eg Livermore)**
- **Inclusion of matter and vacuum oscillations**
- **Improve selection efficiency and quality cut criteria**
- **Apply filters for atmospheric muons**
- **Directionality ?**
- **Energy sensitive observables ?**