A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope

A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics Laboratory H.O.U

VLV∨T workshop 5th International Workshop on Very Large Volume Neutrino Telescopes

SN (GARCHING) Model

L. Hüdepohl,¹ B. Müller,¹ H.-T. Janka,¹ A. Marek,¹ and G. G. Raffelt²

DOI: 10.1103/PhysRevLett.104.251101

In this study we consider only the $\bar{v}_{_e}$ flux and the reaction $\bar{v}_{_e} + p \rightarrow e^+ + n$

Detector Geometrical Layout

154 Towers with a mean horizontal distance of 180m Each Tower consists of 20 bars, 6m in length and 40m apart One MultiPMT OM at each end of the bar.

Detectors Footprint

31 3" PMTs (~30% max QE) inside
a 17" glass

sphere with 31 bases (total ~6.5W)

- Cooling shield and stem
- Single vs multi-photon hit separation
- Large (1260 cm²) photocade area per OM
- First full prototype under test

$$\frac{d\Phi_{\overline{v}_{e}}}{dE_{\overline{v}_{e}}}(E_{\overline{v}_{e}},d) = \frac{1}{4\pi d^{2}} \int_{0}^{T} \frac{L(t)}{\langle E_{\overline{v}_{e}} \rangle(t)} f_{a(t),\langle E_{\overline{v}_{e}} \rangle(t)} dt$$

$$\int_{0}^{\text{Time Integrated Differential Flux}} \frac{\text{(d: SN distance in kpc)}}{number of \ \overline{v}_{e} \ / \ cm^{2} \ / \ MeV}$$

$$\rho_{\text{int}} = \rho_{t \, \text{arg} \, et} \cdot \int_{0}^{\infty} \frac{d\Phi_{\overline{v}_{e}}(E_{\overline{v}_{e}})}{dE_{\overline{v}_{e}}} \sigma(E_{\overline{v}_{e}}) dE_{\overline{v}_{e}}$$

$$V_{eff} = \left\langle \frac{n_{obs}}{n_{gen}} \right\rangle V_{gen} \quad N_{obs} = \rho_{\text{int}} \cdot V_{eff}$$

$$\text{Effective Volume}$$

Significance Level of discovery:

Assuming that μ_{bck} is the expected number of background events then for 5 σ discovery the minimum number of observed events, m, is defined as:

$$1 - \sum_{i=0}^{m} \frac{\mu_{bck}^{i} e^{-\mu_{bck}}}{i!} < 1 - erf\left(\frac{5}{\sqrt{2}}\right)$$
Assuming Gaussian statistics:
$$\frac{m - \mu_{bck}}{\sqrt{\mu_{bck}}} > 5 \quad but \ \mu_{bck} \equiv \mu_{bck}\left(T\right) \Rightarrow m \equiv m(T)$$
General Condition:
$$\frac{N_{obs}\left(T\right) - \mu_{bck}\left(T\right)}{\sqrt{\mu_{bck}}\left(T\right)} = \frac{S\left(T\right)}{\sqrt{\mu_{bck}}\left(T\right)} = \max$$

$$S(T) = \int_{0}^{T} s_{0} e^{-\frac{t}{t_{0}}} dt : \frac{d}{dt} \left(\frac{S(T)}{\sqrt{\mu_{bck}}\left(T\right)}\right) = 0 \Rightarrow \mathbf{T} = \frac{t_{0}}{2} \left(e^{\frac{T}{t_{0}}} - 1\right) \sim 2.95s$$

$$\rho_{int} \quad 0.078m^{-3}$$

Garching Model: t₀=2.35

брс

Background-I: Only K⁴⁰ Decays

Signal: SN @ 10 kpc Inverse Beta Decay (IBD): $\bar{v}_e + p \rightarrow e^+ + n$

Multiplicity>2 Multiplicity>4 Multiplicity>6

Background Rejection-I: K⁴⁰ Decays

2 Number of PMT hits per Active OM

Background-II: Atmopsheric muons

Expected Number of Events in a full WPD detector (6160 Oms) in T=2.95s

tough guys!

Background Rejection-II: Atmospheric muons

94% of the background due to atmospheric muons (i.e. active Oms with multiplicity >5) has at least one neighbor OM with multiplicity >2
Only 7% of the signal has at least one neighbor OM with multiplicity >2

Simulate the Cherenkov Light Emision and the photoelectron production on the small PMTs photocathode due to:

- 1. SN neutrinos (following the GARCHING Model) interacting inside the KM3 full detector and producing positrons in the vicinity of the Oms.
- 2. K⁴⁰ decays producing electrons and gammas
- 3. Atmospheric muons
- e.g. 10⁷ fully simulated signal events, 10¹¹ fully simulated K40 background events and 10⁶ fully simulated atmospheric muon tracks

Apply the signal selection criteria for each optical module and estimate:

- a) the number of SN induced events (OMs passing **Certain Selection Criteria**) for T=2.95s as a function of the SN distance
- b) the number of background induced events (due to K⁴⁰ and atmospheric muons) for T=2.95s

 252 ± 1006 21.40

Estimate the SN distance for which the observed number of events (on top of the expected background) corresponds to 5 discovery, e.g.

а	b	С	Signal @10 kpc	Backr. K ⁴⁰	Backr. Atm. μ
5	1	2	147.5	2.53	18.96

$$\mu_{bck} = 2.53 + 18.96 = 21.49$$

$$1 - \sum_{i=0}^{m} \frac{\mu_{bck}^{i} e^{-\mu_{bck}}}{i!} < 5.96 \cdot 10^{-7} \Rightarrow m = 47 \Rightarrow \mathbf{N}_{SN}^{5\sigma} \sim 25.5$$

$$\frac{\mathbf{N}_{SN}^{10kpc}}{\mathbf{N}_{SN}^{5\sigma}} = \left(\frac{d_{\max}}{10kpc}\right)^{2} \Rightarrow \mathbf{d}_{\max} = \left(\frac{147.5}{25.5}\right)^{1/2} \cdot 10kpc \sim 24kpc$$

а	b	с	d _{max} (kpc)
5	0	0	20.7
5	1	0	21.7
5	1	1	24
5	1	2	24
5	1	3	22
5	2	0	23.5

The background rejection criteria are based on the PMT waveform amplitude/charge Can the Time over Threshold digitization electronics provide the necessary Information?

Pulse simulation

single photoelectron averaged wave form

We choose the condition: ToT> 7.5 ns, to select pulses "corresponding" to more than 1 pe

Background Rejection Criteria

OM Multiplicity	>	5	OM Multiplicity	>	5
Q-Threshold	=	b	ToT-Threshold	>	В
Number of PMTS with Q>Q-Threshold	>	с	Number of PMTS with ToT>ToT-Threshold	>	с
Neighbors with multiplicity greater than 2	<	1	Neighbors with multiplicity greater than 2	<	1

а	b	С	d _{max} (kpc)	
5	1	2	24	
а	В	С	d _{max} (kpc)	Leoluding pulse statistics
5	7.5ns	2	23	

D_{max}=23 kpc for 5 σ discovery

а	В	С	Signal @10 kpc	Backr. K ⁴⁰	Backr. Atm. μ
5	7.5 ns	2	118.7	< 0.8	15.4

Livermore model \rightarrow ~30 kpc Icecube: dmax=50 kpc (80 strings) (2000 events) 36.9 (DC) (13 events)

Summary

SN explosions within our Galaxy can be detected by an Underwater Neutrino Telescope.

Preliminary results for the Garching model without oscillations, indicate that a maximum distance of ~ 23 kpc for 5σ significance level can be reached

Further Studies

- Other models for SN collapse (eg Livermore)
- Inclusion of matter and vacuum oscillations
- Improve selection efficiency and quality cut criteria
- Apply filters for atmospheric muons
- Directionality?
- Energy sensitive observables?