
Gaudi in Key4hep

Juan Miguel Carceller

CERN

July 10, 2024

Key4hep

• Turnkey software for future accelerators

• Share components to reduce maintenance
and development cost and allow everyone
to benefit from its improvements

• Complete data processing framework, from
generation to data analysis

• Community with people from many different
experiments: FCC, CEPC, CLIC, EIC, ILC,
Muon Collider, etc.

• Open biweekly talks with all stakeholders

Framework
(Gaudi)

k4geo

1

https://indico.cern.ch/category/11461/

The Key4hep Event Data Model: EDM4hep

• Data Model used in Key4hep, it is
the language that all components
must speak

• Classes for physics objects, like
MCParticle, with possible
relations to other objects

• Associations between objects

• Objects are group in collections,
like MCParticleColleciton

EDM4hep DataModel Overview (v0.10)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

MCRecoParticleAssociation

MCRecoTrackerAssociation

MCRecoCaloAssociation

MCRecoCaloParticleAssociation

2

Podio
• Podio is tool used to generate the C++ code for EDM4hep
• The specification is written in YAML

edm4hep::MCParticle:
Description: "The Monte Carlo particle - based on the lcio::MCParticle."
Members:
- int32_t PDG // PDG code of the particle

- int32_t generatorStatus // status of the particle as defined by the generator

- int32_t simulatorStatus // status of the particle from the simulation program

- float charge // particle charge

- float time [ns] // creation time of the particle in wrt. the event

- double mass [GeV] // mass of the particle

- edm4hep::Vector3d vertex [mm] // production vertex of the particle

- edm4hep::Vector3d endpoint [mm] // endpoint of the particle

- edm4hep::Vector3d momentum [GeV] // particle 3-momentum at the production vertex

- edm4hep::Vector3d momentumAtEndpoint [GeV] // particle 3-momentum at the endpoint

- edm4hep::Vector3f spin // spin (helicity) vector of the particle

- edm4hep::Vector2i colorFlow // color flow as defined by the generator

OneToManyRelations:
- edm4hep::MCParticle parents // The parents of this particle

- edm4hep::MCParticle daughters // The daughters this particle

• Podio uses Jinja template to transform this to C++ code
3

podio::Frame

• The Frame (from podio) is a data container where
collections can be stored

• Support for multithreading

• Typically represents an event but can be anything else

• A backend decides how it is written to a file (ROOT files
with ROOT TTrees most of the time, but can also be
RNTuple)

• Takes ownership of the collections

Simple interface with get and put

frame.get("MCParticleCollection");

frame.put(std::move(coll), "NewCollection");

Also in python:

from podio.root_io import Reader

reader = Reader('myfile.root')

events = reader.get('events')

for frame in events:

coll = frame.get('MCParticleCollection')

4

The Key4hep Framework

• Gaudi based core framework:

• k4FWCore provides the interface between EDM4hep and Gaudi

• k4Gen for integration with generators

• k4SimGeant4 for integration with Geant4

• k4SimDelphes for integration with Delphes

• k4MarlinWrapper to call Marlin processors

• . . .

5

https://gitlab.cern.ch/gaudi/Gaudi/
https://github.com/key4hep/k4FWCore
https://github.com/HEP-FCC/k4Gen
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/key4hep/k4SimDelphes
https://github.com/key4hep/k4MarlinWrapper

Gaudi in Key4hep

6

Past (and present)
• Using exclusively GaudiAlg
• Custom DataHandle class
• A custom DataWrapper is pushed to the store, thin wrapper of a pointer to a collection
• Two algorithms for IO: PodioInput and PodioOutput and an IO service: PodioDataSvc
• How it works:

• PodioDataSvc holds a podio::Frame (Frame = event) and some metadata. This Frame
owns all the collections

• PodioInput will ask PodioDataSvc to read and register the collections
• [Algorithm execution]. . .
• PodioOutput will use the podio::Frame to write the collections to a file (only those that

we want to write)
• Multiple issues

• Not designed for multithreading
• PodioDataSvc isn’t an implementation of IHiveWhiteBoard 7

Functional algorithms

• Recently added support for functional algorithms

• New service, IOSvc

• Two algorithms Reader and Writer
• Reader will ask IOSvc to read (locked) and then will push itself the collections
• Writer will write the collections to a file

• Collections are wrapped in a std::shared_ptr<podio::CollectionBase> and pushed to
the store

• Use ‘EventDataSvc‘ directly or ‘HiveWhiteBoard‘ instead of having our own implementation
of the data service

8

Functional algorithms

• Nice interface, the existence of std::shared_ptr is hidden for users

struct ExampleFunctionalConsumer final : k4FWCore::Consumer<void(const edm4hep::MCParticleCollection& input)> {
ExampleFunctionalConsumer(const std::string& name, ISvcLocator* svcLoc)

: Consumer(name, svcLoc, KeyValues("InputCollection", {"MCParticles"})) {}

void operator()(const edm4hep::MCParticleCollection& input) const override {
if (input.size() != 2) {
fatal() << "Wrong size of MCParticle collection, expected 2 got " << input.size() << endmsg;

throw std::runtime_error("Wrong size of MCParticle collection");
}

}

};

9

Functional algorithms

• Nice interface, the existence of std::shared_ptr is hidden for users

struct ExampleFunctionalProducer final : k4FWCore::Producer<edm4hep::MCParticleCollection()> {
ExampleFunctionalProducer(const std::string& name, ISvcLocator* svcLoc)

: Producer(name, svcLoc, {}, KeyValues("OutputCollection", {"MCParticles"})) {}

edm4hep::MCParticleCollection operator()() const override {
auto coll = edm4hep::MCParticleCollection();
coll.create(1, 2, 3, 4.f, 5.f, 6.f);

coll.create(2, 3, 4, 5.f, 6.f, 7.f);

return coll;
}

};

10

Functional algorithms

• Requested feature: have as input and / or output an arbitrary (known at runtime) number of
collections

• Example use-case: Overlay algorithm

• Reimplementation of Consumer, Transformer and Multitransformer that use a vector with
actual collections

• In the end not so much work, since the way inputs are read or outputs are written is the same
• Extracted to a common function that all use

11

Functional algorithms

• Example: consumer of an arbitrary number of collections

struct ExampleFunctionalConsumerRuntimeCollections final
: k4FWCore::Consumer<void(const std::vector<const edm4hep::MCParticleCollection*>& input)> {

ExampleFunctionalConsumerRuntimeCollections(const std::string& name, ISvcLocator* svcLoc)
: Consumer(name, svcLoc, KeyValues("InputCollection", {"DefaultValue"})) {}

void operator()(const std::vector<const edm4hep::MCParticleCollection*>& input) const override {
if (input.size() != 3) {
throw std::runtime_error("Wrong size of the input map, expected 3, got " + std::to_string(input.size()));

}

}

};

12

Functional algorithms

• Example: producer of an arbitrary number of collections

struct ExampleFunctionalProducerRuntimeCollections final
: k4FWCore::Producer<std::vector<edm4hep::MCParticleCollection>()> {

ExampleFunctionalProducerRuntimeCollections(const std::string& name, ISvcLocator* svcLoc)
: Producer(name, svcLoc, {}, {KeyValues("OutputCollections", {"MCParticles"})}) {}

std::vector<edm4hep::MCParticleCollection> operator()() const override {
const auto locs = outputLocations();
std::vector<edm4hep::MCParticleCollection> outputCollections;

for (size_t i = 0; i < locs.size(); ++i) {
info() << "Creating collection " << i << endmsg;

auto coll = edm4hep::MCParticleCollection();
coll.create(1, 2, 3, 4.f, 5.f, 6.f);

coll.create(2, 3, 4, 5.f, 6.f, 7.f);

outputCollections.emplace_back(std::move(coll));

}

return outputCollections;
}

};

13

Summary

• Previously using GaudiAlg and PodioDataSvc for reading and writing

• Moved many algorithms to use Gaudi::Algorithm

• Still using GaudiTool from GaudiAlg

• Support added for functional algorithms

• Reimplemented Consumer, Transformer and MultiTransformer to support an arbitrary
number of collections
• No plans on reimplementing others, no usage for example for a Filter that can filter an

arbitrary number of collections

14

