A High Resolution Near-Detector for Neutrino Factory: µ ≻ Ve Vµ Sanjib R. Mishra University of South Carolina

Reinventing the Near Detector

Use of "identical" small detector at the near site is insufficient for future LBL experiments:

- $\Phi^{\nu,\bar{\nu}}(E_{\nu},\theta_{\nu})$ different at Near & Far sites;
- Impossible to have "identical" detectors, for $\mathcal{O}(100kt)$, at the projected luminosities;
- Different compositions of event samples ($\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}$, NC, CC)

 \implies Coarse resolution dictated by $\mathcal{O}(100kt)$ and different flux at Near-vs-Far tell us that the Identical Near Detector concept is insufficient

- Need a high resolution detector at the Near-Site to measure systematics affecting the Far-detector:
 - $\nu_{\mu}, \bar{\nu}, |\nu_{e}|, |\bar{\nu}_{e}|$ content vs. E_{ν} and θ_{ν} ;
 - ν -induced $\pi^{\pm}/K^{\pm}/p/\pi^0$ in CC and NC interactions;
 - Quantitative determination of E_{ν} absolute energy scale;
 - Measurement of detailed event topologies in CC & NC.

- Measure over the full range of FD
- ABackground to the V(Bar)e/ μ -Appearance
- ▲ V -vs0 V(Bar) Interactions
- \implies Provide an 'Event-Generator' measurement for $\mathcal{LBL}\nu$
- High Resolution near detectors at future LBL facilities are natural heirs to the precision neutrino scattering programme

Can they achieve sufficient precision to complement the Colliders?

USC

Events/Spill in MINOS-ND

≃2eI3 PoT/Spill in MINOS(NuMI)

(Juxtapose against that expected from 3e14 PoT/Spill in ProjectX)

10/24

Proposal for A High Resolution Neutrino Experiment in a B-Field for Project-X

S.R. Mishra, R. Petti, C. Rosenfeld

University of South Carolina

HiResMν

Document on HiResMNu available at: http://www.fnal.gov/directorate/Longrange/Steering Public/community letters.html (To be submitted to NIM)

4

⇒ HiResMNu idea being developed within the LBNE collaboration

Straw Tube Tracker (STT)

Best performance of the 4-options at LBNE

▲3.5m x 3.5m x 7m STT (7 tons; **ρ**~0.1gm/cm^3)

4π-ECAL Dipole-Field (0.4T) μ-Detector (RPC) in Dipole and Downstream

Muon Identifier $^{\bullet}$ Fe/`A' Targets ($\simeq \times 10$ FD-Stat) \implies FD

Series Pressurized Ar-target ($\simeq x5$ FD-Stat) ⇒ LAr-FD

MEASURING NUCLEAR EFFECTS (Fe, Water, Ar, ..)

- Measure the A dependence (Ca, Cu, H₂O, etc.) in addition to the main C target in STT:
 - Ratios of F_2 AND xF_3 on different nuclei;
 - Comparisons with charged leptons.
- Use 0.15X₀ thick target plates in front of three straw modules (providing 6 space points) without radiators. Nuclear targets upstream.
 - For Ca target consider CaCO₃ or other compounds;
 - **OPTION** : possible to install other materials (Pb, etc.).

South Carolina Group

A ν_{μ} CC candidate in NOMAD

HiResMv : order of mag. higher segmentation

e- Sample

Figure 20: Distribution of y_{bj} for e⁻ (solid dots), μ^- (open dots), $\nu_{\mu}NC$ (big hatch) and CC (small hatch) background after scaling. The combined (histo) μ^- plus background agrees with the distribution of e⁻ data. The bottom plot is the same as the top but includes kinematic

Figure 19: Distribution of x_{bj} for e⁻ (solid dots), μ^- (open dots), ν_{μ} NC (big hatch) and CC (small hatch) background after scaling. The combined (histo) μ^- plus background agrees with the distribution of e⁻ data. The bottom plot is the same as the top but includes kinematic curte

What we build on: NOMAD DATA

USC

- Energy in Downstream-ECAL $\simeq 6\%/\sqrt{E}$
- ▲ μ -Angle resolution (~5 GeV) $\simeq O(1 \text{ mrad})$
 - μ-Energy resolution (~3 GeV) ~ 3.5%
 e-Energy resolution (~3 GeV) ~ 3.5%

Sensitivity Calculations:

• We have used LBNE Flux: Flux from $\mu \ge V_e V_{\mu}$ will be cleaner/simpler

Parametrized calculation

Repeat with NOMAD configuration and checked against the Data and Geant-MC (Agree within 15%)

Statistics

Assumptions:

SeV Emu; I e20 Muon-decays/year; 3-year Mu- and 3-year Mu+ Runs (Many thanks to Rosen, Yordan, and Roumen!)

	μ - Decay	
	CC-Events	NC-Events
Vμ	1400M	500M
Anti-Ve	600M	230M
	μ+ Decay	

	CC-Events	NC-Events
Anti- Vµ	700M	250M
Ve	I240M	420M

• Expected IMD \simeq 210k; V-e NC \simeq 0(300k)

PHYSICS GOALS

- ◆ An 'Event-Generator Measurement' for the LBLν experiments including single and coherent $π^0$ ($π^+$) production, $π^\pm/K^\pm/p$ for the ν_e-appearance experiment, and a quantitative determination of the neutrino-energy scale. (∈Backgrounds to Oscillation
- Measurement of the weak-mixing angle, $\sin^2 \theta_W$, with a precision of about 0.2%, using independent measurements:
 - $\nu(\overline{\nu})$ -q (DIS);

• $\nu(\overline{\nu})$ - e^- (NC).

⇐Example of Precision Measurement

Direct probe of the running of $\sin^2 \theta_W$ within a single experiment.

• Precise determination of the exclusive processes such as ν quasi-elastic, resonance, $K^0/\Lambda/D$ production, and of the nucleon structure functions.

 Search for weakly interacting massive particles with electronic, muonic, and hadronic decay modes with unprecedented sensitivity.

Why Tracker (ECAL/*µ-Detector*) within a B-Field?

- ND must measure the full range of $Ev \& \theta v$ else the sensitivity of FD will be compromized
- Measure differences in V & Anti-V interactions which might fake a " δ_{CP} "
- \leq STT will be able to distinguish μ -/ μ + down 0 ~0.3 GeV
- \Rightarrow ND must measure and ID leptons (e & μ) emerging at large angles;

Why track Protons & $\pi(K)+/-?$

 \blacksquare Precision determination of V_{μ} -QE requires proton-tracking.

- \Rightarrow Key to QE measurement
- \Rightarrow (µ-, p) provide an *in situ* constraint on the Fermi-motion and hence on the Ev-scale
- \Rightarrow QE interactions dominant in Low-Ev: Need accurate parametrization of QE [see $\sigma(QE)$ Fig.]
- \Rightarrow dE/dx to ID-proton

• HIRESMNU option will have a large proton sample from $\Lambda \gg p\pi$

 \blacksquare ND must measure the π - $\&\pi$ + (K+/-) in NC and CC:

- ⇒ the largest source of background: wrong-sign Muon
- \Rightarrow the largest source of background to the V_{μ} & Anti- V_{μ} disappearance
- \Rightarrow ND must track & ID QE-protons & $\pi(K)$ +/-

QE

Quasi-Elastic Scattering

• new, modern measurements of QE σ at these energies (on 12C)

measured at low & high E on ¹²C ?!

V_µ-QE Sensitivity Calculation

Texample of a V-interaction in a high-resolution ND as a calibration of FD

Key is 2-Track (μ, p) signature ******Proton reconstruction: the critical issue* (*dE/dx in but not used in the analysis)

Use Nomad data/MC as calibration

QE Candidates in NOMAD: STT will have x6 more points for protons

Figure 15: A $\nu_{\mu}\text{-}\text{QE}$ candidate in NOMAD

Measurement of exclusive topologies

 ◆ High resolution allows excellent reconstruction of exclusive decay modes
 ◆ NOMAD performed detailed analysis of strange particle production: Λ, Λ̄ (G
 ◆ Δ resonances in CC & NC are easier to reconstruct
 ◆ Constraints on NC decay mode Δ → Nγ

 $\overset{\scriptstyle{\bullet}}{\overset{\scriptstyle{\bullet}}{\overset{\scriptstyle{\bullet}}}} \wedge \xrightarrow{\scriptstyle{\bullet}} Calibration of Proton Reconstruction$

CC-Data: Armenteros Plot

- Protons easily identified by the large dE/dx in STT & range
 - \implies Minimal range to reconstruct p track parameters 12cm $\Rightarrow 250 \ MeV$
- Analize BOTH 2-track and 1-track events to constrain FSI, Fermi motion and nuclear effects
- Use multi-dimensional likelihood functions incorporating the full event kinematics to reject DIS & Res backgrounds
 - $\implies \textit{On average } \varepsilon = 52\% \textit{ and } \eta = 82\%$ for CC QE at LBNE

⇒Measure of Fermi Motion

Why measure and ID e- & e+?

Solutions Measurement of π_0 in NC and CC via $\gamma^{\implies}e-e^+$ measured in the tracker { π_0 is the largest background to (anti)Ve-appearance}

Measure beam Ve and Anti-Ve

 \Rightarrow A must if there are large- Δm^2 oscillations

▲ Measurement of absolute flux

• To discover δ_{CP} we ought to ensure that Ve & anti-Ve events are as expected

 \Rightarrow ND must measure π_0 and Ve & anti-Ve e --vs- e+

A $\bar{\nu}_e$ CC candidate in NOMAD

- The HiResM

 → Reconstruction of the e's as bending tracks NOT showers
- Electron identification against charged hadrons from both TR and dE/dx \implies TR π rejection of 10^{-3} for $\varepsilon \sim 90\%$
- Use multi-dimensional likelihood functions incorporating the full event kinematics to reject non-prompt backgrounds $(\pi^0 \text{ in } \nu_\mu \text{ CC and NC})$
 - \implies On average $\varepsilon = 55\%$ and $\eta = 99\%$ for ν_e CC at LBNE

If we keep the signal efficiency at ~55%, then purity is about 95%

Flux: ... Always the Flux

Inverse Muon Decay: Vx + e-→Vx + μ- {Single, forward μ-}
 Vµ (t-channel) or Anti-Ve (s-channel)
 Elegant, Simple but steep, though calculable, threshold, Ev≥II GeV
 Systematic Advantage of HiResMnu lies in avoiding the systematic error incurred by
 CCFR or CHARM-II in extrapolating the background to the signal ζ=Pe(I-cosΘe)≤Cut

In the Weak Mixing Angle (0.238) at Q~0.1 GeV is known to ≤1% precision
 If the Weak Mixing Angle (0.238) at Q~0.1 GeV is known to ≤1% precision

Absolute Flux using v-e Elastic NC Scattering

 $\overleftarrow{\alpha}$ V-eSignal: Single, forward e-Background: NC induced Pi0 $\overleftarrow{\gamma}$ $\overleftarrow{\gamma}$ e- (e+ invisible): charge-symmetric

 \Im Two-step Analysis: \Re Electron-ID:TR \Re Kinematic cut: ζ =Pe(I-cos Θ e)

in Using (Pe, Θ e), we can deduce Ev-Rec Compare with Generated-Ev

The work of the terms in Fid.Volume 🕷

The precision on relative V-flux (shape) is worse than in that determined using Low-V0 technique

<u>Ve-CC</u> Sensitivity Study

[™] Ve-CC[™]→ Signal: NC and CC(without Mu-ID) [™]→ Background

Two Steps to Analysis: # Electron-ID:TR
Kinematic Isolation of NuE-induced e- from the Hadron-Vector

NOMAD data as a benchmark

र्षे HiResMnu Fiducial Volume	<mark>NuE</mark> 1,500	NuMu-CC 100,000	<mark>Nu-NC</mark> 34,000
pµ<0.5GeV	1,500	8,273	34,000
Electron-Sel aga ≥ 20-Mod(-Ve) P-ve>0.5 GeV TR-Cut	inst -ve I 1,228 1,192 911	Hadrons 1,738 1,319 1.3	11,213 8,662 8.7
Pi0-Backgound Phton≻e-(e+) TR-Cut		5.5 5.0	24.1 21.7
e- Sample	911	6.3	30.4

HiResMnu:			
[∉] NuE-Eff	₩>	60.8%	
NuE-Purity	₩>	96.1%	

Fig. 8. Monte Carlo predicted electron efficiency ε_e corresponding to $\varepsilon_{\pi} = 10^{-3}$ as a function of the momentum of the particle for 9 associated hits.

- The HiResM

 → Reconstruction of the e's as bending tracks NOT showers
- Electron identification against charged hadrons from both TR and dE/dx \implies TR π rejection of 10^{-3} for $\varepsilon \sim 90\%$
- Use multi-dimensional likelihood functions incorporating the full event kinematics to reject non-prompt backgrounds (π⁰ in ν_µ CC and NC)
 - \implies On average $\varepsilon = 55\%$ and $\eta = 99\%$ for ν_e CC at LBNE

If we keep the signal efficiency at ~55%, then purity is about 95%

<u>LOW- ν_0 METHOD</u> \Leftarrow Shape of Vµ or Anti-Vµ Flux

• Relative flux vs. energy from low- ν_0 method:

$$N(E_{\nu}: E_{\text{HAD}} < \nu^{0}) = C\Phi(E_{\nu})f(\frac{\nu^{0}}{E_{\nu}})$$

the correction factor $f(\nu^0/E_{\nu}) \to 1$ for $\nu^0 \to 0$.

 \implies Need precise determination of the muon energy scale and good resolution at low ν values

+ Fit Near Detector $\nu_{\mu}, \bar{\nu}_{\mu}$ spectra:

- Trace secondaries through beam-elements, decay;
- Predict $\nu_{\mu}, \bar{\nu}_{\mu}$ flux by folding experiental acceptance;
- Compare predicted to measured spectra $\Longrightarrow \chi^2$ minimization

$$\frac{d^2\sigma}{dx_F dP_T^2} = f(x_F)g(P_T)h(x_F, P_T)$$

• Functional form constraint allows flux prediction close to $E_{\nu} \sim \nu^0$.

♦ Add measurements of π^{\pm}/K^{\pm} ratios from hadro-production experiments to the empirical fit of the neutrino spectra in the Near Detector

USC

Shape of V_{μ} or Anti- V_{μ} Flux using Low-V0 Method

 v_{μ} , Low-Nu0 Fit, ND at 500m Relative V μ -Flux Measurement using LOW-V0 @ LBNE

Systematic-Errors in Low-V0 Relative Flux: V_µ & Anti-V_µ

√Variation in V0-cut
√Variation in V0-correction
Systematic shift in Ehad-scale
√Vary (QE) ±10%
√Vary (Res) ±10%
√Vary (DIS) ±10%
√Vary functional-forms
Systematic shift in Emu-scale

Seam-Transport (ND at 1000m) Includes: *Alignment (1.0mm) *Horn Current (0.5%) *Inert material (0.25λ) *Proton spot size
⇒ Revisit these (?) & Investigate ND @ 500m

Π0-<u>Reconstruction</u>

• Conversion/Conversion 2k events

South Carolina Group

Reconstructed π^0 in CC interactions in NOMAD

Overall more than 100k reconstructed events. Three topologies:

- Cluster/Cluster 72k events
- Cluster/Conversion 22k events
- Conversion/Conversion 7k events

South Carolina Group

MEASUREMENT OF THE RATIO $\mathcal{R}_{e\mu}$ \Leftarrow Search/Impact of Large- Δm^{**2} Oscillation

 Independent analysis of neutrino data and anti-neutrino data due to possible differences following MiniBooNE/LSND results

 \implies Need a near detector which can identify e^+ from e^-

• Measure the ratio between the observed $\nu_e(\bar{\nu}_e)$ CC events and the observed $\nu_\mu(\bar{\nu}_\mu)$ CC events as a function of L/E_{ν} :

$$\mathcal{R}_{e\mu}(L/(\mathsf{Ev})) \equiv \frac{\# \ of \ \nu_e N \to e^- X}{\# \ of \ \nu_\mu N \to \mu^- X} (L/(\mathsf{Ev}))$$
$$\bar{\mathcal{R}}_{e\mu}(L/(\mathsf{Ev})) \equiv \frac{\# \ of \ \bar{\nu}_e N \to e^+ X}{\# \ of \ \bar{\nu}_\mu N \to \mu^+ X} (L/(\mathsf{Ev}))$$

• Compare the measured ratios $\mathcal{R}_{e\mu}(L \mid \mathsf{Ev})$ and $\overline{\mathcal{R}}_{e\mu}(L \mid \mathsf{Ev})$ with the predictions from the low- ν_0 flux determination assuming no oscillations

+ Same analysis technique used in NOMAD to search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations.

Particle Multiplicity: <u>V-induced Hardon-jet</u>

 [™]Vµ-CC identified by µ- in the FD However in V-NC interactions:
 ⇒ π-/K-/D-hadron »+ µ- form an *almost* irreducible background
 ⇒ -ve hadron punchthrough form additional, reducible background
 [™]Anti-Vµ CC identified by µ+ in the FD: Still higher backgrounds
 [™]π0's in NC ⇒ Largest backgrounds to (Anti)Ve--appearance

 $a \simeq 30\%$ of the Non-Prompt background ($\pi_0+-/K_0+-/D \Rightarrow \mu$, EM-shower)

arise from "short" $V_{\mu-CC}$

>> Measure (π 0+-/K0+-/D ⇒ μ , EM-shower) in NC & in CC

Identification of NC interactions in NOMAD

Difficult to measure NC cross-section in conventional detectors
 NOMAD can identify NC events from kinematics with a purity of 90%
 Plots show NC/CC separation for events failing the muon identification

←Non-µID Events

CHARM DIMUON PRODUCTION FROM NOMAD DIS

DIS-2011 by Petti

♦ Measure **RATIO** of cross-sections to reduce systematics:

 $\mathcal{R}_{\mu\mu} \equiv \sigma_{\mu\mu_c} / \sigma_{cc} \simeq N_{\mu\mu_c} / N_{cc}(x); \quad x = E_{\nu}, x_{B_j}, \sqrt{\hat{s}}$

- ♦ Require leading μ⁻ and Q² ≥ 1 GeV² $\int \sigma_{\mu\mu_c} \phi \, dx \, dy \, dE_{\nu} = 5.15 \pm 0.05 \times 10^{-3} \, \nu_{\mu} \text{CC}$
- + Total systematic uncertainty (17 different sources) $\sim 2\%$
- + Agreement with model calculation based upon global fits with NuTeV+CCFR only

 \Rightarrow Precise empirical constraints on π +/- in NC and CC

Summary of Sensitivity Studies with HiResMnu-Idea

→ Determination of Absolute Flux: $V_{\mu} + e_{-} \Rightarrow V_{\mu} + e_{-} & \text{Inverse Muon Decay}$

▲ Relative Flux:

Vµ-Flux Shape: Far-Detector/Near-Detector (Ev) VµBar-Flux Shape: Far-Detector/Near-Detector (Ev) VµBar/Vµ Flux (Ev)

• Efficiency of V_{μ} -QE CC and Background as a function of Ev

Efficiency of Ve-CC and Background (TT0) from NC and CC as a function of Ev [Ditto for VeBar-CC]

 \checkmark T0-detection efficiency and background as a function of $E\pi_0$

Res Mnu

Sin^{**}2(Θw)

▲ Vµ-Nucleon Elastic Scattering → Del-S

✓ Vµ-Energy scale: QE + Missing-Pt

Search for Sterile ∨

✓ Search for High Del-m**2 Oscillation

٠٠٠٠

Synergy between the ND-Design for LBNE and Nu-Factory

- ▲ A group actively working on the ND-design for the LBNE & the Nu-Factory
- ▲ Although the Nu-Factory beam (µ ≫→ Ve Vµ) simpler than LBNE, the requirements on systematic precision are much higher
- ▲ The LBNE-STT (HIRESMNU) is the reference candidate for LBNE

 \Rightarrow Joint effort will benefit all

Plans for the Future:

Begun work with the Mu-decay flux files

Studies/simulation of V-interactions toward goals of a Nu-factory

Formulate some ND-Metrics pertinent of Nu-Factory: (What sensitivity studies should be undertaken?)

^δAbosolute & Relative (Shape) flux of (Anti)Vµ/Ve

```
It Estimation of backgrounds (Wrong-sign) to
Ve ⇒ Vµ
Ve ⇒ VT
```

The provide the Second Second

Backup Slides

We build on the NOMAD experience:

PRECISION MEASUREMENTS

 Ratio of NC and CC in both ν-N and ν̄-N Deep Inelastic Scattering. Paschos-Wolfenstein relation allows a reduction of systematic uncertainties:

$$R^{-} \stackrel{\text{def}}{\equiv} \frac{\sigma_{\text{NC}}^{\nu} - \sigma_{\text{NC}}^{\bar{\nu}}}{\sigma_{\text{CC}}^{\nu} - \sigma_{\text{CC}}^{\bar{\nu}}}$$

• $\delta sin^2 \theta_W / sin^2 \theta_W = 2.0 \times 10^{-3}$

• 19(6)×10⁶ NC selected events in $\nu(\bar{\nu})$ mode

 \implies Dominated by systematics

♦ Ratio of $\nu e \rightarrow \nu e$ and $\bar{\nu} e \rightarrow \bar{\nu} e$ NC elastic scattering, which is free from hadronic uncertainties:

- $\delta sin^2 \theta_W / sin^2 \theta_W = 5.6 \times 10^{-3}$
- 31(17) $\times 10^3$ NC selected events in $\nu(\bar{\nu})$ mode
- \implies Dominated by statistics

South Carolina Group

<u>RELEVANCE OF THE $\sin^2 \theta_W$ MEASUREMENT</u>

• Sensitivity expected from ν scattering in HiResM ν comparable to the Collider precision:

- FIRST single experiment to directly check the running of $\sin^2 \theta_W$: elastic ν -e scattering and νN DIS have different scales
- <u>different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole)
- direct measurement of neutrino couplings to Z^0
 - \implies Only other measurement LEP $\Gamma_{\nu\nu}$

- Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly in a similar Q^2 range
 - \implies A discrepancy of 3σ with respect to SM <u>in the NEUTRINO data</u>

South Carolina Group

NC ELASTIC SCATTERING *neutrino-nucleus is sensitive to the strange quark* contribution to nucleon spin, Δs , through axial-vector form factor G_1 :

$$G_1 = \left[-\frac{G_A}{2}\tau_z + \frac{G_A^s}{2}\right]$$

At $Q^2 \to 0$ we have $d\sigma/dQ^2 \propto G_1^2$ and the strange axial form factor $G_A^s \to \Delta s$.

• Measure NC/CC RATIOS as a function of Q^2 to reduce systematics ($\sin^2 \theta_W$ as well):

$$R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$$

- Statistical precison in HiResM ν will be at the 10^{-3} level: $\sim 1.5 \times 10^6 \nu$ NC and $\sim 800k \bar{\nu}$ NC events
- High resolution tracking for protons down to momenta of 250 MeV/c in HiResM ν allows to access low Q^2 values and reduce backgrounds;
- A precision measurement over an extended Q^2 range reduces systematic uncertainties from the Q^2 dependence of vector $(F_{1,2}^s)$ and axial (G_A^s) strange form factors;
- Nuclear effects are expected to largely cancel in the ratios R_{ν} and $R_{\bar{\nu}}$;
- Need to check neutron background.

Source of uncertainty	$\delta \mathcal{X}/\mathcal{X}$	$\delta R^{ u}/R^{ u}$	$\delta R^{ar{ u}}/R^{ar{ u}}$	$\delta \mathcal{X}/\mathcal{X}$
Data statistics	0.00593	0.00176	0.00393	
Monte Carlo statistics	0.00044	0.00015	0.00025	
Total Statistics	0.00593	0.00176	0.00393	0.0008
$\nu_e, \bar{\nu}_e$ flux (~ 1.7%)	0.00171	0.00064	0.00109	0.0001
Energy measurement	0.00079	0.00038	0.00059	0.0004
Shower length model	0.00119	0.00054	0.00049	n.a.
Counter efficiency, noise	0.00101	0.00036	0.00015	n.a.
Interaction vertex	0.00132	0.00056	0.00042	n.a.
Other				0.0008
Experimental systematics	0.00277	0.00112	0.00141	0.0010
Experimental systematics $d,s \rightarrow c, s$ -sea	0.00277 0.00206	0.00112 0.00227	0.00141 0.00454	0.0010 0.0011
Experimental systematics $d,s \rightarrow c, s$ -sea Charm sea	0.00277 0.00206 0.00044	0.00112 0.00227 0.00013	0.00141 0.00454 0.00010	0.0010 0.0011 n.a.
Experimental systematics d,s \rightarrow c, s-sea Charm sea $r = \sigma^{\bar{\nu}}/\sigma^{\nu}$	0.00277 0.00206 0.00044 0.00097	0.00112 0.00227 0.00013 0.00018	0.00141 0.00454 0.00010 0.00064	0.0010 0.0011 n.a. 0.0005
Experimental systematics $d,s \rightarrow c, s$ -sea Charm sea $r = \sigma^{\bar{\nu}}/\sigma^{\nu}$ Radiative corrections	0.00277 0.00206 0.00044 0.00097 0.00048	0.00112 0.00227 0.00013 0.00018 0.00013	0.001410.004540.000100.000640.00015	0.0010 0.0011 n.a. 0.0005 0.0001
Experimental systematics $d,s \rightarrow c, s$ -sea Charm sea $r = \sigma^{\bar{\nu}}/\sigma^{\nu}$ Radiative corrections Non-isoscalar target	0.00277 0.00206 0.00044 0.00097 0.00048 0.00022	0.00112 0.00227 0.00013 0.00018 0.00013 0.00010	0.00141 0.00454 0.00010 0.00064 0.00015 0.00010	0.0010 0.0011 n.a. 0.0005 0.0001 N.A.
Experimental systematics $d,s \rightarrow c, s$ -sea Charm sea $r = \sigma^{\bar{\nu}}/\sigma^{\nu}$ Radiative corrections Non-isoscalar target Higher twists	0.00277 0.00206 0.00044 0.00097 0.00048 0.00022 0.00061	0.00112 0.00227 0.00013 0.00018 0.00013 0.00010 0.00031	0.00141 0.00454 0.00010 0.00064 0.00015 0.00010 0.00032	0.0010 0.0011 n.a. 0.0005 0.0001 N.A. 0.0003
Experimental systematics $d,s \rightarrow c, s$ -sea Charm sea $r = \sigma^{\bar{\nu}}/\sigma^{\nu}$ Radiative corrections Non-isoscalar target Higher twists R_L	0.00277 0.00206 0.00044 0.00097 0.00048 0.00022 0.00061 0.00141	0.00112 0.00227 0.00013 0.00018 0.00013 0.00010 0.00031 0.00115	0.00141 0.00454 0.00010 0.00064 0.00015 0.00010 0.00032 0.00249	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Experimental systematics $d,s \rightarrow c, s$ -seaCharm sea $r = \sigma^{\bar{\nu}}/\sigma^{\nu}$ Radiative correctionsNon-isoscalar targetHigher twists R_L Model systematics	0.00277 0.00206 0.00044 0.00097 0.00048 0.00022 0.00061 0.00141 0.00181	 0.00112 0.00227 0.00013 0.00018 0.00013 0.00010 0.00031 0.00115 0.00258 	0.00141 0.00454 0.00010 0.00064 0.00015 0.00010 0.00032 0.00249 0.00523	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 4: Summary of uncertainties on the extraction of the weak mixing angle $(\mathcal{X} = \sin^2 \theta_W)$ based upon the Pascos-Wolfenstein relation. The first three columns refer to the published NuTeV errors [12] while the last column indicates the corresponding projection for our experiment.