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& Measurement of the PMNS Matrix Elements

O13 Ocp  +V=Mass Hierarchy Resolving degeneracies

o Need Syst.Precision
“Beyond PMNS

©23 =45007? ..CPTViolation? .«High Am” Oscillation ?

=

®The familiar, beautiful neighborhood
s¢ X-secs, Sin**2(Ow): precision comparable to Colliders?

+:Sum rules, Isospin Physics (Nu -vs- NuBar < 6CP)

s:Heavy neutrinos

“....'...

s:Rewriting the V text-book



Reinventing the Near Detector

4 Use of "identical” small detector at the near site is insufficient for future LBL
experiments:

o OV (E,,0,) different at Near & Far sites;
e Impossible to have “identical” detectors, for O(100kt), at the projected luminosities;
o Different compositions of event samples (v,,,v,,v., NC, CC)

— Coarse resolution dictated by O(100kt) and different flux at Near-vs-Far tell us
that the Identical Near Detector concept is insufficient

4 Need a high resolution detector at the Near-Site to measure systematics affecting the
Far-detector:

ssMeasure over the full range of FD

o V,,VU, V| |Ve|content vs. B, and 0,;
o v-induced 7% /K* /p/7® in CC and NC interactions; #sBackground to the V(Bar)e/[-Appearance

o Quantitative determination of E, absolute energy scale; gV -ysO V(Bar) Interactions

e Measurement of detailed event topologies in CC & NC.
— Provide an ‘Event-Generator’ measurement for LBLv

4 High Resolution near detectors at future LBL facilities are natural heirs to the
precision neutrino scattering programme

Can they achieve sufficient precision to complement the Colliders?

Sanjib R. Mishra
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Events/Spill in MINOS-ND
~2e |3 PoT/Spill in MINOS(NuMI)

(Juxtapose against that expected from 3el4 PoT/Spill in ProjectX)

Run: 6578 Snarl: 118 All 21 Slices

Reconstruction Summary
Tracks: 16 Showers: 15
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Proposal for A High Resolution Neutrino Experiment

in a B-Field for Project-X

S.R. Mishra, R. Petti, C. Rosenfeld

University of South Carolina

HiResMuy

Document on HiResMNu available at:
http://www.fnal.gov/directorate/Longrange/Steering Public/community letters.html

(To be submitted to NIM)

Sanjib R. Mishra uscC
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"RADIATOR"

STRAW LAYER

STRAW LAYER

'''''''
.....

GLUE

STT MODULE

C REINFORCEMENT

B=04T
Density = 0.1 g/cm3, 85% in the radiator foils.

Transition Radiation »> e-/e+ ID = y (w. Kinematics)

dE/dx »> Proton, 11+/-, K+/- |ID
Magnet/Muon Detector »> +/-

= HiResMNu idea being developed within the LBNE collaboration

(SOAA) WALSAS NONIN



Straw Tube Tracker (STT)

ssBest performance of the 4-options at LBNE

<~
%

1
\
\
|

4$3.5m x 3.5m x 7m STT (7 tons; Pp=0.lgm/cm?3)

4TT-ECAL
Dipole-Field (0.4T)
HU-Detector (RPC) in Dipole and Downstream

Transition Radiation »>e-/fe+ID =Yy

dE/dx »> Proton, mm+/-, K+/-
Magnet/Muon Detector »> p+/-

T Muon Identifier #Fe/ A’ Targets (=x10 FD-Stat) =7 FD

#sPressurized Ar-target (=x5 FD-Stat) =2 LAr-FD




MEASURING NUCLEAR EFFECTS (Fe,Water,Ar,..)

A TARGET (0.15 X0)

4.0 cm

4 Measure the A dependence (Ca, Cu, H;O, etc.) in
addition to the main C target in STT:

e Ratios of F5 AND xF5 on different nuclei;

e Comparisons with charged leptons.

4 Use 0.15X, thick target plates in front of three
straw modules (providing 6 space points) without
radiators. Nuclear targets upstream.

e For Ca target consider CaCQOs or other compounds;

e | OPTION |: possible to install other materials (Pb, etc.).

X times

South Carolina Group



A v, CC candidate in NOMAD

ss Xx12 higher sampling in HiIResMnu

ss x4T1T calorimetric and p converage




Kinematics in HiResMnu

Pt-Vector Mez

(usc-

fS hC

e: Transition Radiation

Out of plane
Isurement

1 » “h”’=>Vector Sum of Tracks
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Figure 20: Distribution of y;; for e~ (solid dots), u~ (open dots), v,NC (big hatch) and CC

(small hatch) background after scaling. The combined (histo) = plus background agrees with

the distribution of e~ data. The bottom plot is the same as the top but includes kinematic

R

Figure 19: Distribution of x;; for e~ (solid dots), p~

0.4 0.6 08 ]
Xbj-0Bin-El

42
(open dots), v,NC (big hatch) and CC

(small hatch) background after scaling. The combined (histo) p~ plus background agrees with

the distribution of e~ data. The bottom plot is the same as the top but includes kinematic



What we build on: NOMAD DATA

3 R ' : L : ' S : D 160012
S4500 Keviar - Entries 30831
‘5 % skins | 3000 Mean 0.4982
1 / \ | RMS 0.124B6E-01
4000 . . a
3500 E l E' [ El ﬁ 2500
oo [ B (IS 18 B - *
3 > & 3 2000
g g £
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!
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0 el § e gl ssgliavidles i g i o g ' ag s ¥t 3 LAy e
-5 '4 "3 '2 '1 0 1 2 3 4 5 O 1 1 1 1 ‘ 1 | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | |
V |:> Z(cm) 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53
MKs EKs.G.1.0
Neutrino radiography of one drift chamber Reconstructed K" mass

4+ NOMAD: charged track momentum scale known to < 0.2
hardonic energy scale known to < 0.5%

4 HiResMuv: | 200 x | more statistics and | 12 x | higher segmentation

4TT-ECAL & U Coverage

Sanjib R. Mishra uscC
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Resolutions in HiResMv s "
% 0.0Q |
s P =0.Igm/cm”3 O vos
o
+ Space point position = 200 -%- PRV N R SR M N R N S
s Time resolution = Ins i 006 oo\
0.05 S o D A S R D
+» CC-Events Vertex: A(X,Y,Z) = O(100p) A N MUGON MOMENTURA. L2
o4 MUONMOMENTUM, L=2m _
« Energy in Downstream-ECAL = 6%//E e S St S T S
0.03 |
s M-Angle resolution (~5 GeV) = O(| mrad) i T
T ELECTRON ENERGY 0.06WVE
s M-Energy resolution (~3 GeV) ~ 3.5% 001 -~ R
« e-Energy resolution (~3 GeV) ~ 3.5% IS S S PR PN FUUEE FUUTE PR PUUE PO

HiResMv for B=0.4T, p=0.1g/cm’

1 2 3 4 5 6 7 8 9 10
Energy/Momentum (GeV)

WSensitivity Calculations:
We have used LBNE Flux: Flux from 4 >>Ve Vp will be cleaner/simpler
Parametrized calculation

Repeat with NOMAD configuration and checked against the Data and Geant-MC
(Agree within 15%)

13



Statistics

Assumptions:
25 GeV Emu; 120 Muon-decays/year; s:3-year Mu- and 3-year Mu+ Runs

H- Decay
CC-Events NC-Events
Vu 1400M 500M
Anti-Ve 600M 230M
U+ Decay
CC-Events NC-Events
Anti- Vp 700M 250M
Ve 1240M 420M

Expected IMD = 210k; V-e NC = 0(300k)

14



PHYSICS GOALS

4 Determination of the relative abundance, the energy spectrum, and the detailed
topology (complete hadronic multiplicity) of the four neutrino species in NulM|:

v,, V,, V.| and | v, | CC-interactions. €Absolute v-Flux Measurement

4 An ‘Event-Generator Measurement’ for the LBLv experiments including single and
coherent w° (n) production, = /K= /p for the v.-appearance experiment, and a
quantitative determination of the neutrino-energy scale. Backgrounds to Oscillation

4 Measurement of the weak-mixing angle, sin“0y, with a precision of about 0.2%,
using independent measurements:

. Z%Z(?/(/Sg) cExample of Precision Measurement

Direct probe of the running of sin® 0y, within a single experiment.

4 Precise determination of the exclusive processes such as v quasi-elastic, resonance,
KY/A/D production, and of the nucleon structure functions.

4 Search for weakly interacting massive particles with electronic, muonic, and hadronic
decay modes with unprecedented sensitivity.

15



Why Tracker (ECAL/u-Detector) within a B-Field?

ssConstrain Ev-scale
#sND must measure the full range of Ev & Ov else the sensitivity of FD will be compromized
#¢ Measure differences in V & Anti-V interactions which might fake a “ dce”

#sSTT will be able to distinguish /~/U+ down 0 ~0.3 GeV

=2 ND must measure and ID leptons (e & L) emerging at large angles;

16



Why track Protons & TT(K)+/-?

ssPrecision determination of Vu-QE requires proton-tracking.

— Key to QE measurement
= (M-, p) provide an in situ constraint on the Fermi-motion and hence on the Ev-scale

= QE interactions dominant in Low-Ev: Need accurate parametrization of QE [see O(QE) Fig.]

— dE/dx to ID-proton

ssHIRESMNU option will have a large proton sample from A®*pTr

#sND must measure the TT- & TT+ (K+/-) in NC and CC:

= the largest source of background: wrong-sign Muon

= the largest source of background to the Vu & Anti-Vu disappearance

=2 ND must track & ID QE-protons & Tt(K)+/-

17



QE

Quasi-Elastic Scattering

* new, modern measurements of QE o at these energies (on '2C)

‘P
£

)
o

-39
x10
16 Fermi Gas with M,=1.35 GeV
14E- {. Fermi Gas with M,=1.03 GeV.
125 fl
10
8
6 — *  MiniBooNE
4 * NOMAD  Eur.Phys.J.C63:355-381,2009
2 — SciBooNE
0 — taal . I
-1 RFG
10 1 10 E;"™ (GeV)

(T. Katori, Nulnt09)

L Discrepancy?

~ 30% difference between QE o
measured at low & high E on 12C ?!

?
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Vu-QE Sensitivity Calculation

“Example of a V-interaction in a high-resolution ND as a calibration of FD

&Key is 2-Track (U, p) signature s Proton reconstruction: the critical issue
(#dE/dx in but not used in the analysis)

“Use Nomad data/MC as calibration

s lInput | Expert | SubDetectors

T ;
I\/IJUH) n 6-"70g GeYy %z

|
|
L]

Dt ' =
I i i 11 i
Figure 14: A r,,-QE candidate in NOMAD

L1l

QE Candidates in NOMAD:STT will have x6 more points for protons

P linput | Expert | SubDetectors

‘ | & rﬂntmn 0I1238| GeV/c

|
1]
\
4

Figure 15: A r,,-QE candidate in NOMAD
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Measurement of exclusive topologies

0.25

4+ High resolution allows
excellent reconstruction of
exclusive decay modes

+ NOMAD performed

detailed analysis of strange .
C

0.2

particle production: A,A oy

+ A resonances in CC & NC
are easier to reconstruct

+ Constraints on NC decay
mode A — N~

0.05

& A »> Calibration of Proton Reconstruction

0.1 =

CC-Data: Armenteros Plot

OiW I I I I
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RECONSTRUCTION OF CC QUASI-ELASTIC INTERACTIONS

v, CC QE in HiResMv at LBNE

fffffffffffff ffffffffffffffff PURITY

0.5“”1””1.5‘“‘2””2.5‘ ‘3””3.5””4‘“‘4.5””5
Energy (GeV)

4 Protons easily identified by the large
dE/dx in STT & range

— Minimal range to reconstruct p track
parameters 12cm =- 250 MeV

4 Analize BOTH 2-track and 1-track
events to constrain FSI Fermi motion
and nuclear effects

4 Use multi-dimensional likelihood func-
tions Incorporating the full event kine-
matics to reject DIS & Res backgrounds

—> On average ¢ = 52% and n = 82%
for CC QE at LBNE
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“— V.Poor!
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Why measure and ID e- & e+?

#$ Measurement of TT0 in NC and CC via y®*e-e+ measured in the tracker

{0 ;

ssMeasure beam Ve and Anti-Ve

= A must if there are large-Am”'2 oscillations

.85 Measurement of absolute flux
#: To discover Ocr we ought to ensure that Ve & anti-Ve events are as expected

=2 ND must measure 110 and Ve & anti-Ve ' e- -vs- e+

24



A v, CC candidate in NOMAD
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#s x12 higher sampling in HiResMnu

s X471 calorimetric and p converage
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IDENTIFICATION OF v, CC INTERACTIONS

SR EERs

e PURTY

Ve CC in HiResMv at LBNE

0-4 e """""""" """"""""""""""""""""""""""
03 EFFICIENCY
02
04

0 :\ \ ! \ L \ ! \ L ! \ L \ I R
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Energy (GeV)

4 The HiResMv detector can distinguish
electrons from positrons in STT

— Reconstruction of the e’s as
bending tracks NOT showers

4 Electron identification against charged
hadrons from both TR and dE/dx

—> TR 7 rejection of 1072 for e ~ 90%

4 Use multi-dimensional likelihood func-
tions incorporating the full event kine-
matics to reject non-prompt backgrounds
(7 in v, CC and NC)

—> On average ¢ = [88% and n = 99%
for v, CC at LBNE

« VeBar-CC Sensitivity:
If we keep the signal efficiency at ~55%, then purity is about 95%



Flux: ... Always the Flux

Nlnverse Muon Decay: Vx + e-+>Vix + - { )
Vu (t-channel) or Anti-Ve (s-channel)

Elegant, Simple but steep, though calculable, threshold, Evz| | GeV
Systematic Advantage of HiResMnu lies in avoiding the systematic error incurred by

CCFR or CHARM-II in extrapolating the background to the signal T=Pe(l-cosOe)=Cut

wV-Electron Elastic NC Events: Vx + e-+>Vx + e- { }
Different processes: Ve€-CC, Anti-Vee-CC, & all flavor Vxe-NC

Different Ee spectrum

Focus on Vpe-NC: Experimentally the most challenging
* The Weak Mixing Angle (0.238) at Q~0.1 GeV is known to <1% precision

= O(Vxe-NC) known = Absolute-d(Vx)
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% Absolute Flux using V-e Elastic NC Scattering

& v-e 2+ Signal: Single, forward e-
Background: NC induced Pi0 ®»* y »+ e- (e+ invisible): charge-symmetric

& Two-step Analysis: *Electron-ID: TR % Kinematic cut: C=Pe(l-cosOe)

Simulation of charged hadron background. (use LBNE Flux)

negative hadrons E —— negative hadrons
signal

1
B (Rad.)

0 . ¢ (= P.(1 —cos 9))
Background charge symmetric & benign

28



® Using (Pe, ©e), we can deduce Ev-Rec Compare with Generated-Ev

& Use 25,000 NC v-e Events in Fid.Volume

Y- o o . .
& The precision on relative V-flux (shape) is worse than
in that determined using Low-V0 technique

‘fg [
S
g ‘ ® Rec.
1500 | Gen. —
1000 : :
500 | .. .
0 4 ] ’
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Ve-CC Sensitivity Study

& Ve-CC=* Signal: NC and CC(without Mu-ID) ®* Background

® Two Steps to Analysis:
* Electron-ID: TR
* Kinematic Isolation of NuE-induced e- from the Hadron-Vector

& NOMAD data as a benchmark

w NuE NuMu-CC Nu-NC

Fiducial Volume 1,500 100,000 34,000 HiResMnu:
pu<0.5GeV 1,500 8,273 34,000 ENuUE-Eff »> 60.8%
Electron-Sel against -ve Hadrons NuE-Purity #> 96.1%

>20-Mod(-Ve) 1,228 1,738 11,213
P-ve>0.5GeV 1,192 1,319 8,662

TR-Cut 911 1.3 8.7 Check: For Nomad

Pi0-Backgound NuE-Eff  #> 48.8%

Phton>e-(e+) 5.5 241
TR-Cut 5.0 21.7 Actual: Eff » 45.0%

Pur »> 80.0%
e- Sample 911 6.3 30.4

30



dN/dE (arbitrary units)

Eé

140

]
S

40

20

Analog readout: pulse height

i' gTI IIIIII | S i § | . 10 GeV/c pions/electrons
M j § =t Pions 90% electron cut
L 5 GeV/c muons ] 3 _ —>
] s Electrons .
Jf X . ! oo} N Electron TR-Eff as a function of Pe for
4 M 2 Gevle clectrons } : | 0**-3 rejectlon of T
8-ray electrons ] 0015 [ - r | i EE T - e
in \ _ omé —j &S" 08 - /,/-— ” T 1
L}ﬁ E \““r" 0.005 4 g . '// N
T S S b e L e &? 3 I frrmeemne e Neoroeeeaen. N
0 30 “ 0 E(keV fo L, Likelihood ratio L § /i E\\
b [ v\
NOMAD TRD reaches a 0.1% pion contamination for isolated tracks ‘% / L\ ]
of momenta 1-50 GeV/c with 90% electron efficiency 85 i f : : \\ -1
, | . :
f o
80 |- {/ o -
! -
] |
75 o \ :
# Atlas-TRT’s Geant4 simulation conducted < 'f § "‘
for the HiResMnu-config. verifies the ol | : '\.\ -
e/Tt separation assumed for the STT > ; [ T

(See PNevski DocDB#432-V1) ! ; |

R — AILI 2 & A PR ‘,‘,LH - PN - it -
>

0 . 10
Particle momentum, GeV/c

Fig. 8. Monte Carlo predicted electron efficiency ¢, correspond-
ing to ¢, = 107 % as a function of the momentum of the particle
for 9 associated hits.
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IDENTIFICATION OF v, CC INTERACTIONS

SR EERs

~ emmv

Ve CC in HiResMv at LBNE
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Energy (GeV)

4 The HiResMv detector can distinguish
electrons from positrons in STT

— Reconstruction of the e’s as
bending tracks NOT showers

4 Electron identification against charged
hadrons from both TR and dE/dx

—> TR 7 rejection of 1072 for e ~ 90%

4 Use multi-dimensional likelihood func-
tions incorporating the full event kine-
matics to reject non-prompt backgrounds
(7 in v, CC and NC)

—> On average ¢ = [88% and n = 99%
for v, CC at LBNE

s VeBar-CC Sensitivity:
If we keep the signal efficiency at ~55%, then purity is about 95%



LOW-1y METHOD <Shape of Vu or Anti-Vu Flux

4 Relative flux vs. energy from low-1, method:

N(E, : Egap < 1°) = C(I)(Ey)f(E—V)

the correction factor f(V°/E,) — 1 for 1’ — 0.

= Need precise determination of the muon energy scale
and good resolution at low v values

4 Fit Near Detector v,,, 1, spectra:

e Trace secondaries through beam-elements, decay;

e Predict v,,v, flux by folding experiental acceptance;

o Compare predicted to measured spectra => x? minimization
d’o

depapz = [@r)g(Pr)h(er, Pr)

o Functional form constraint allows flux prediction close to E, ~ V.

4+ Add measurements of ¥/ K* ratios from hadro-production experiments to the
empirical fit of the neutrino spectra in the Near Detector

uscC
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Shape of Vu or Anti-Vu Flux using Low-Vo Method
v., Low-Nu0 Fit, ND at 500m Relative V-Flux Measurement using LOow-V0 @ LBNE

1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 + data

0000 T = 1 [e) %= Data L B L B B L LN NN
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.18. I .20 0.75 o ; . ;1 . 6| . 8| . .1|0. I .1|2. I .1|4. .1|6 1|8. ZO
Evis(GeV) Evis(GeV)
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Systematic-Errors in Low-V0O Relative Flux: Vu_& Anti-Vyu

«Variation in VO-cut

«Variation in VO-correction
ssSystematic shift in Ehad-scale

«Vary O(QE) *10%
+«Vary 0(Res) T 10%
«Vary g(DIS) £10%
s:Vary functional-forms
s Systematic shift in Emu-scale

«sBeam-Transport (ND at 1000m)

Includes:
*Alignment (1.0mm)
*Horn Current (0.5%)
*Inert material (0.25\)
*Proton spot size
= Revisit these (?) & Investigate ND @ 500m

35



TT0-Reconstruction

& Clean [10- and Y-signatures in HiResMnu

® v-NC & CC =+ TT0 2+ yy
~50% of the y »* e+e- will convert in the STT,

away from the primary vertex.
We focus on these

Efficiency

® y-ldentification:
* e-/et ID: TR
* Kinematic cut: Mass, Opening angle

> At least one converted Y in STT
(Reconstructed e- & e+;
e- or e+ traverse 26 Mods)
>Another Y in the
Downstream & Side ECAL

>
N\

N
I

0.2

—
E 0(Ge

8

10
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Reconstructed ¥ in NC interactions in NOMAD

- i - %

I Clus/Clus 1800 - ‘Clus/Conv : Conv/Conyv

a2 1600 | 250

N 1400 - i

L E 200 N

- 1200 -

a 1000 150

i 800 -

- 600 100

i 400 — -

L - °0 -

- 200 —

L T T ‘ O - T T : 0 I I IR R A
0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
clus/clus y Pair Mass clus/v" y Pair Mass vA° v Pair Mass

Overall more than 33k reconstructed events. Three topologies:
® Cluster/Cluster 24k events [STT: expect similar resolution but
® Cluster/Conversion 7k events much lower combinatorics]

® Conversion/Conversion 2k events

South Carolina Group
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Reconstructed 7° in CC interactions in NOMAD
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0
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v Pair Mass

(verall more than 100k reconstructed events. Three topologies:

® Cluster/Cluster 72k events

® Cluster/Conversion 22k events
~® Conversion/Conversion 7k events

South Carolina Group
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MEASUREMENT OF THE RATIO R., <=Search/Impact of Large-Am**2 Oscillation

4 Independent analysis of neutrino data and anti-neutrino data due to possible
differences following MiniBooNE/LSND results

— Need a near detector which can identify e™ from e~

4 Measure the ratio between the observed v,(v.) CC events and the observed v,(v,,) CC
events as a function of L/ E,,:

#of Ve.N — e X

Rep(LI(EV)) = L of v N ,u_X(L /(EV))
1L

. v,N — et X

Ron(LI(EV)) = Z 3]{ e o (LIEV))

4+ Compare the measured ratios R.,,(L; EV and R., (L, EV with the predictions from the
low-vy flux determination assuming no oscillations

4 Same analysis technique used in NOMAD to search for v,, — v, oscillations.
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Particle Multiplicity: V-induced Hardon-jet

“\Vu-CC identified by p- in the FD
However in V-NC interactions:
= TI-/K-/D-hadron »+ - form an almost irreducible background

= -ve hadron punchthrough form additional, reducible background

% Anti-Vp CC identified by p+ in the FD: Still higher backgrounds

“Tr0's in NC = Largest backgrounds to (Anti)Ve--appearance

§=30% of the Non-Prompt background (TT0+-/K0+-/D = |, EM-shower)

arise from “short” Vyu-cc

>> Measure (110+-/K0+-/D = Y, EM-shower) in NC & in CC
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®_. (Rad) - (Rad)

@, ,, (Rad/n)

Identification of NC interactions in NOMAD

CC NC

T piinme T SRR 4 Difficult to measure NC
, ERBESEIEEIIiiiiiiiii T LEEEEEERR NI I cross-section in conventional

| " e, (Rad) |  e.rad)  detectors

o« (iIZERRMRNRSEESSZiii B o EEES: + NOMAD can identify
oS L HEES with a purity of 90%
SRR, R4 Plots show NC/CC

o ) ™ separation for events

e T §ecEii failing the muon identification
o E§= : Non-pID Events

P™T (GeV) P'T(GeV)




CHARM DIMUON PRODUCTION FROM NOMAD

-3

1072

X

DIS-201 | by Petti

O  NOMAD

—— AKP w/o NOMAD

(&) X1 =
o B O NOMAD =
— 8 * CHORUS L xn -
%" - % CCFR e _ -
© 6 | — iiiA;ZSSEMAD 5 Tﬁﬂ § \T J 1:_
. =— 1 ‘ 0.8
al- o 0.61
2_ /%/Y 0.4:—
i 0.2
B Co | L | ! Coovoo b b
E, (GeV)
4 Measure | RATIO | of cross-sections to reduce systematics:
Ruuw = 0pup/0ce = Nyp [Nee(z); 2 =E,, 2B, NG
4 Require leading 11~ and Q* > 1 GeV*
Jou¢dedydE, = 515+0.05x 107° 1,CC
4 Total systematic uncertainty (17 different sources) ~ 2%

4 Agreement with model calculation based upon global fits with NuTeV+CCFR only

Precise empirical constraints on Tt+/-in NC and CC

42



®Summary of Sensitivity Studies with HiResMnu-Idea

&% Determination of Absolute Flux:

Vu +e=-#» Vu+e- & Inverse Muon Decay

&% Relative Flux:

Vu-Flux Shape: Far-Detector/Near-Detector (Ev)
VuBar-Flux Shape: Far-Detector/Near-Detector
VuBar/Vp Flux

#s Efficiency of Vu-QE CC and Background as a function of

s Efficiency of Ve-CC and Background (TT0) from NC and CC

as a function of Ev [Ditto for VeBar-CC]

.83 TT0-detection efficiency and background as a function of ETTo

® Precision Physics Studies with HiResMnu
85 Sin™2(ow)
s Vpu-Nucleon Elastic Scattering »> Del-S
#5 Vy-Energy scale: QE + Missing-Pt
#s Search for Sterile V

¢ Search for High Del-m**2 Oscillation

YY)
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Synergy between the ND-Design for LBNE and Nu-Factory

85 A group actively working on the ND-design for the LBNE & the Nu-Factory

#s Although the Nu-Factory beam (4 #* Ve V) simpler than LBNE,
the requirements on systematic precision are much higher

#s The LBNE-STT (HIRESMNU) is the reference candidate for LBNE

= Joint effort will benefit all
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Begun work with the Mu-decay flux files

Studies/simulation of V-interactions toward goals of a Nu-factory

Formulate some ND-Metrics pertinent of Nu-Factory:
(What sensitivity studies should be undertaken?)

Abosolute & Relative (Shape) flux of (Anti)Vu/Ve

Estimation of backgrounds ( ) to
Ve 2+ V
Ve »* VT

Deep synergy between the LBNE and Nu-Factory ND Efforts
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Backup Slides
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We build on the NOMAD experience:

+ B=0.4T

+ p~0.1gm/cm”3
+ e/p/m/KO-1D

Neutrino

Beam [

1 metre

Front

Dlpole Magnet

Calorimeter

V8

:

' '

Veto Planes

TRD

Modules Preshower

Drift Chambers

Trigger Planes

Electromagnetic
Calorimeter

Hadronic
Calorimeter
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PRECISION MEASUREMENTS

4 Ratio of NC and CC in both v-N and v-N Deep Inelastic

Scattering. Paschos-Wolfenstein relation allows a reduction v v
of systematic uncertainties:
\ DIS

ef O.l/ _0.17 P /
R~ = QB ¢ 0 uark
relemdele 7 N q

Q.

N
7/

-’ scattering

o dsin?0yy /sin?Oy =|2.0 x 1073
e 19(6)x10° NC selected events in v(v) mode /QQ/\

—> Dominated by systematics

4 Ratio of ve — ve and ve — ve NC elastic scattering,
which is free from hadronic uncertainties:

P def o(p—c™) Elastic
e olvmer) 70 electron

-7 scatterin
o dsinOyy /sin’Oy ={5.6 x 1073 N &

e 31(17) x10% NC selected events in v(i) mode o ’ e—
— Dominated by statistics /\

South Carolina Group



RELEVANCE OF THE sin® 6y MEASUREMENT

4+ Sensitivity expected from v scattering in HiResMv comparable to the Collider precision:

e FIRST single experiment to directly check the running of sin® @y :

elastic v-e scattering and vIN DIS have different scales
o different scale of momentum transfer with respect to LEP/SLD (off Z° pole)
o direct measurement of neutrino couplings to Z"

— Only other measurement LEP 1",

sin’0}, (Q)

0.242

E158

0.24

4 Independent cross-check of the NuTeV
sin? Oy, anomaly in a similar Q? range

0.238 |- |

Y nu—e¢

HiResMv DIS

— A discrepancy of 30 with respect
to SM in the NEUTRINQ data

0.236

0.232

L

PDG2004

1072 10~ 1 10 10°

10
Q (GeV)

South Carolina Group
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MEASUREMENT OF As

4| NCELASTIC SCATTERING | neutrino-nucleus is sensitive to the strange quark

contribution to nucleon spin, As, through axial-vector form factor G:

Ga

2

At Q* — 0 we have do/d(Q)* o< G% and the strange axial form factor G — As.

4 Measure| NC/CC RATIOS | as a function of ()* to reduce systematics (sin* Oy, as well):

__ _o(vp—vp) | ___ _o(vp—vp)
RV  o(vn—pTp)’ RV ~ o(vp—putn)

o Statistical precison in HiResMv will be at the 1073 level: ~ 1.5 x10° v NC and ~ 800k v NC events

e High resolution tracking for protons down to momenta of 250 MeV/c in HiResMv allows to
access low Q? values and reduce backgrounds;

e A precision measurement over an extended Q? range reduces systematic uncertainties from the Q>
dependence of vector (F} ) and axial (G*,) strange form factors;

o Nuclear effects are expected to largely cancel in the ratios R, and R;
e Need to check neutron background.

uscC

50



Source of uncertainty | 6X/X J6RY/R” J0R”/R” 0X /X
Data statistics | 0.00593  0.00176  0.00393
Monte Carlo statistics | 0.00044  0.00015  0.00025
Total Statistics | 0.00593 0.00176 0.00393 0.0008
Ve, Ve flux (~ 1.7%) | 0.00171  0.00064  0.00109 0.0001
Energy measurement | 0.00079  0.00038 0.00059 0.0004
Shower length model | 0.00119  0.00054  0.00049 n.a.
Counter efficiency, noise | 0.00101  0.00036  0.00015 n.a.
Interaction vertex | 0.00132  0.00056  0.00042 n.a.
Other 0.0008
Experimental systematics | 0.00277 0.00112 0.00141 0.0010
d,s—c, s-sea | 0.00206  0.00227  0.00454 0.0011
Charm sea | 0.00044  0.00013  0.00010 n.a.
r=oc"/o” | 0.00097 0.00018  0.00064 0.0005
Radiative corrections | 0.00048  0.00013  0.00015 0.0001
Non-isoscalar target | 0.00022  0.00010  0.00010 N.A.
Higher twists | 0.00061  0.00031  0.00032 0.0003
Ry | 0.00141  0.00115  0.00249 || (Fs, Fr,zF3) 0.0005
Model systematics | 0.00281 0.00258 0.00523 0.0014
TOTAL | 0.00711 0.00332 0.00672 0.0019

Table 4: Summary of uncertainties on the extraction of the weak mixing angle (X = sin®fy,)
based upon the Pascos-Wolfenstein relation. The first three columns refer to the published
NuTeV errors [12] while the last column indicates the corresponding projection for our experi-

ment.



