Requirements and design options for a vertex detector (Si tracker)

Near Detector Workshop, CERN, 31 July 2011 Paul Soler

Tau detection techniques

- Currently there are three possible techniques for detecting taus (that I know of):
 - Observation of decay kink of tau: emulsion technique (already discussed by P. Migliozzi) like in OPERA or CHORUS
 - Kinematic technique: used by NOMAD to identify taus through the kinematic analysis of the tau decay
 - Reconstruction of the impact parameter with a dedicated vertex detector (ie. Silicon detector, prototyped by NOMAD-STAR)
- Pasquale has already covered the emulsion technique
- I think that a combination of the two other techniques can be used at a near detector of a neutrino factory.

Impact parameter detection of taus

- □ This was invented by Gomez Cadenas et al.
 - NAUSICAA: (Si vertex detector): NIM A 378 (1996), 196-220
 - ESTAR (Emulsion-Silicon Target): NIM A 381 (1996), 223-235
- Identify tau by impact parameter (for one prong decay of τ) and double vertex (for 3 prong decays)

NAUSICAA

NAUSICAA proposal:

- Impact parameter resolution ν_μ-CC=28μm
- Impact parameter resolution v_{τ} -CC=62 μ m

- Efficiencies:
 - τ→μ: ε=10%
 - $\tau \rightarrow \pi(n\pi^0): \varepsilon = 10\%$
 - τ → πππ(nπ⁰): ε=23%
 - Total eff:
 - ε=0.85x10%+0.15x23%=12%

- σ_τ/σ_μ=0.29

Sensitivity at Main Injector with 2x10⁷ v_{μ} CC interactions (MINSIS): $P_{osc}(v_{\mu} \rightarrow v_{\tau}) < \frac{2.48}{2 \times 10^{7} \times 0.12 \times 0.29} = 3.6 \times 10^{-6}$ Intrinsic limit tau production $D_{s} \rightarrow \tau v_{\tau}$:

- 3.5x10⁻⁶ at 450 GeV
- 1.3x10⁻⁶ at 350 GeV
- 9.6x10⁻⁸ at 120 GeV 4

PRD 55, (1997), 1297. NIMA 385 (1997), 91.

□ R&D in NOMAD for short baseline v_{τ} detector based on silicon: NOMAD-STAR (NIMA 413 (1998), 17; NIMA 419 (1998), 1; NIMA 486 (2002), 639; NIMA 506 (2003), 217.) Silicon TARget - STAR

Total mass: 45 kg of B₄C target (largest density 2.49 g cm⁻³ for lowest X₀=21.7 cm)

Near Detector workshop, CERN, 31 July 2011 $1.14 \text{ m}^2 \text{ silicon area}$

□ Aim of NOMAD-STAR: reconstruct short lived particles in a neutrino beam to determine capabilities v_{τ} detection: use impact parameter signature of charm decays to mimic v_{τ}

□ τ impact parameter ~ 62 µm, normal v_{μ} charged current (CC) interactions ~30 µm

- Longest silicon microstrip detector ladders ever built: 72cm, 12 detectors, S/N=16:1
- Hamamatsu Si Detectors: 300 μm thick, 25 μm pitch, 50 μm readout (640 channels) – total 32,000 channels
- UA1 readout: 3 μs shaping

1990s technology: could do much better with LHC type technology and readout

NOMAD-STAR 6195 | Type Hu2 | Trigger V#T172 OnX | Display | Command | Views | Input | Expert | SubDetectors] un 20216 | Event STAR - YZ View v_{μ} CC event D^0 Monte Carlo Event OnX | Display | Command | Views | Input | Expert | Sub Detectors | Bun 211010 | Brone 2 | Type No | Trigger STAR - YZ View Run 20216 | Event 6195 | Type Hu2 | Trigger V#T1T2 OnX | Display | Command | Views | Input | Expert | SubDetectors STAR - YZ View Secondary vertex Primary vertex r workshop, 8 July 2011

- Charm event reconstruction:
 - Implementation of Kalman filter
 - Constrained fit method: extract charm signatures for each charm mass
- Used NOMAD-STAR to search for charm events: marginal statistical accuracy, but was a good proof of principle

Meson	Num events	Back- ground	Production Rate	Efficiency
D^0	24	13.3	13.3±1.0%	3.5%
D+	10	3.8	3.8±0.5%	3.5%
D _s +	11	5.2	5.2±0.6%	12.7%
Total	45	22.3	7.2±2.4%	

Near Detector workshop, CERN, 31 July 2011

Charm measurement at Near Detector

- Amongst other things, we need to measure charm cross-section to validate size of charm background in wrong-sign muon signature
- Charm cross-section and branching fractions poorly known, especially close to threshold

 Charm decays

Very hard for emulsion and liquid

argon TPC since rate so high

11

Near Detector Block Diagram

- Near Detector design will need three sections:
 - Vertex detector for charm/tau measurement at the front.
 - High resolution section (SciFi tracker or TRT tracker) for leptonic flux measurement
 - Mini-MIND detector for flux and muon measurement

Vertex detector dimensions

- Vertex detector:
 - Assume: $150x150x2cm^3$ per layer of B₄C (2.49 g/cm³) and 18 layers: total mass = 2.02 tonnes
 - Assume 20 layers of silicon: 45 m² of silicon
 - Assume silicon strip detectors but could be pixels
 - About 64,000 channels per layer: 1.28 million channels ${\sim}^{20\,\text{m}}$

Charm and tau measurements

- **Rates:** approx $10^9 v_{\mu}$ CC events/year in 1 ton detector ν_{μ}
- □ Assume 12% eff from NAUSICAA
- Inclusive charm production at 27 GeV (from CHORUS):
 6.4±1.0%
 - From 10-30 GeV: $\sim 4\% \rightarrow 4x10^7$ charm events!!
 - Charm produced in CC reaction with d or s quark so always have lepton
 - Associated charm in NC interaction (see charm review De Lellis et al. Phys Rep 399 (2004), 227-320)

- For tau measurement we would use the same analysis
 - We would do a search for $v_{\mu} \rightarrow v_{\tau}$ and search for τ^{-}
 - However, there is anti-v_e background that can create D⁻ which looks like signal, but need to identify e⁺ to reject background!!!
- So, very important to have light detector with B-field (ie Scintillating Fibre tracker) behind vertex detector to identify positron with high efficiency:
 - We would have to reject positron background using a similar analysis to that used for MIND: use a mixture of isolation and kinematic techniques to reject background (ie. In MIND we rejected v_e background at 10⁻⁶ but this was in iron. Assuming no background: $P(v_{\mu} \rightarrow v_{\tau}) < \frac{2.48}{10^9 \times 0.12 \times 0.29} = 7.1 \times 10^{-8}$ Very tough: probably overestimate in efficiency since background 14

rejection will affect it

Conclusions

- We can use a vertex detector to identify charm at a NF near detector
- Use impact parameter for for one prong events and vertex detection for two prong events
- Efficiencies and proof of principle demonstrated in NOMAD-STAR: successful detection of charm
- Can achieve two tons of a passive target with silicon strip detectors (45 m² of silicon, 1.3M channels): not overly challenging in LHC era
- No problems at all to measure charm and charm species
- □ More challenging to do tau searches due to charm background, but need to perform full analysis to determine sensitivities to NSI: $P_{\mu\tau} < 7 \times 10^{-8}$?