Accelerator Flux

Christopher Tunnell JAI @ Oxford

Phrasing of Question

- I. First thing to answer: how does accelerator effects influence physics (FD and ND)?
- 2. Question later: how well do we need to measure these effects at various places?

Musings on:

- Accelerator effects
 - Polarization
 - Energy Spread
 - Divergence
 - Current

Polarization

E	σ_E	< P >
3	2.5%	0.28%
3	0	0.50%
I	0	6%
	5%	6%

Polarization @ 25 GeV

Turns [1.6 km]

Energy spread?

Oscillation Probabilities

Energy spread and oscillation probability commute. Swamped by detector response.

My Ring Simulation

- Randomly sample points in 6D phasespace where polarized muon decays (energy spread, divergence, etc.)
- 2. Compute baseline and angle for some point at the ND
- 3. Determine COM angle
- 4. Compute flux

Can you measure current on axis?

- During chat with Alain, we thought about using on-axis gamma detector
- (straight length)/(gamma) means you don't see all the photons...
- But event rate should go as (gamma)^2 on axis from relativitivity
- Will think about more after previous work completes

Summary and Future

- Now that I have a 'fancy' flux, I'm starting to do some analyses with it
- Will try to determine beam diagnostic and ND uncertainties to put into GLoBES
- Anybody want my flux? Done before?
 Suggestions on directions?