Status of Cross Section Measurements and Nuclear Effects Studies

Jorge G. Morfin Fermilab

IDS-NF Near Detector Workshop 30-31 July 2011

Parts based on NuInt11 Summary by Sam Zeller, Fermilab

Quasi-elastic Scattering – Recent History

• Q² discrepancy first noted in K2K ν_{μ} CC data

(T. Ishida, NuInt01)

- initial focus was on low Q²
- relatively normalized comparisons

Jorge G.Morfin - Fermilab

M_A starts to grow...

it was recognized early on that data-MC agreement could be improved by increasing M_A

Jorge G.Morfín - Fermilab

By 2009 Four New Measurements (SciBooNE almost)

Experiment	Target	Cut in Q^2 [GeV ²]	$M_A[GeV]$
$K2K^4$	oxygen	$Q^2 > 0.2$	1.2 ± 0.12
K2K ⁵	carbon	$Q^2 > 0.2$	1.14 ± 0.11
MINOS ⁶	iron	no cut	1.19 ± 0.17
MINOS ⁶	iron	$Q^2 > 0.2$	1.26 ± 0.17
MiniBooNE ⁷	carbon	no cut	1.35 ± 0.17
$MiniBooNE^7$	carbon	$Q^2 > 0.25$	1.27 ± 0.14
NOMAD ⁸	carbon	no cut	1.07 ± 0.07

- several experiments fit QE data (often excluding problematic low Q²)
- most favor $M_A > 1.0$ GeV,

•Except for the higher $\mathbf{E}_{\mathbf{v}}$ NOMAD data that did not

(J. Sobczyk, Nulnt11)

The situation today

QE History

QE History

Beyond Impulse Approximation

- Calculations by M.J. Dekker et al PLB 266 (1991) 249.
- S.K. Singh and E. Oset, Nucl. Phys. A542, 587 (1992)

np-nh Effects

- first recognized at NuInt01
- work motivated by 1-ring "π-less" events in Super-K (= QE + np-nh)

we see an enhacement of the total yield with respect to the free quasi-elastic around 20 %. This result points out the importance of a good evaluation of such neutrino induced np-nhexcitations.

(J. Marteau, NuInt01)

Jorge G.Morfin - Fermilab

• taking data in NuMI beam since March 2010

Jorge G.Morfin - Fermhas "grown up" with Nulnt series 11

MINERVA \overline{v}_{QE} $\overline{v}_{\mu} p \rightarrow \mu^{+} n$

- appeal: cleaner measurement
- less sensitive to modeling of proton rescattering (unlike v case)
- less ambiguity as to whether selection includes np-nh or not?

 $\begin{array}{c} \nu_{\mu} n \longrightarrow \mu^{-} p p \\ \hline \nu_{\mu} p \longrightarrow \mu^{+} n n \quad (?) \end{array}$

- will pursue several QE reconstruction/selection approaches
- this analysis: 1 track + no recoil
- •With higher energy ME beam exposure: 800k QE produced

(K. McFarland, NuInt11)

Jorge G.Morfín - Fermilab

$MINER_{vA} \overline{v}_{QE} \quad \overline{v_{\mu}} \stackrel{p}{\rightarrow} \mu^{+} n$

- event deficit is flat in Q², not flat in E_{v}
- MC = GENIE (RFG, Bodek-Ritchie tails, M_A =0.99 GeV, standard $p_F \& E_B$)
- food for thought

Jorge G.Morfín - Fermilab

(K. McFarland, NuInt11)₃

NC Elastic Scattering

1st results on antineutrino NC EL scattering from MiniBooNE

(R. Dharmapalan, NuInt11)

(R. Tayloe, D. Perevalov,

- see same general trend as v case, but plan to study in more detail
- differential σ 's soon!

Pion Production – Recent Theoretical Work

- π production in GiBUU (O. Lalakulich)
- N- Δ weak transition (K. Gradzyk)
- dynamical models of π production (S. Nakamura)
- also, strange particle production (S. Athar)

Pion Production

- there has been a steady stream of pion measurements that have been published over the years:
 - **K2K**: NC 1π⁰/CC ratio (2005)
 - **K2K**: CC coherent π^+ /CC ratio (2005)
 - **K2K**: CC π⁺/QE ratio (2008)
 - **SciBooNE**: CC coherent π^+ /CC ratio (2008)
 - **MiniBooNE**: NC coherent π^0 fraction (2008)
 - SciBooNE: NC π^0 /CC ratio (2009)
 - **NOMAD**: NC coherent π^0 (2009)
 - **MiniBooNE**: CC π^+ /QE ratio (2009)
 - SciBooNE: NC coherent π^0 /CC ratio (2010)
 - **K2K**: CC π^0 /CC (2010)
 - **MiniBooNE**: NC π^0 (2010)
 - MiniBooNE: CC π^0 (2011)
 - MiniBooNE: CC π^+ (2011)

MiniBooNE CC π^0

Jorge G.Morfin - Fermilab

Data Already Being Used

SciBooNE π Production

CONTENTS

- SciBooNE pion production measurements
 - v CC coh-π⁺: Phys.Rev.D78, 112004 (2008)
 - ν NC-π⁰: Phys.Rev.D81, 033004 (2010)
 - v NC coh-π⁰: Phys.Rev.D81, 111102 (2011)
 - ν CC coh-π⁻: Preliminary results
 - ν CC-π⁰: Preliminary results

brand new!

(H. Tanaka, Nulnt11)

SciBooNE CC π^0

CC π^{o} Cross section

CC π⁰ absolute cross section

 $\sigma(CC\pi^0) = [5.6 \pm 1.9(stat)] \times 10^{-40} \text{ cm}^2/\text{nucleon}$ $\langle \text{Ev} \rangle = 893.3^{+636.4}_{-303.3} \text{ MeV}$

 absolute σ measurement, working on systematics

(H. Tanaka, Nulnt11)

Jorge G.Morfin - Fermilab

Coherent π Production

- comprehensive review of theoretical calculations (L. Alvarez-Ruso, Nulnt11)
 - both PCAC and microscopic approaches
 - 12 different theoretical calculations

Homework

Extend microscopic models to higher energies LAR,S. Dytman, work in progress

Clarify the role of nonlocality in the Δ propagation

Understand SciBooNE $CC\pi^+/NC\pi^0$ measurement

• two new experimental results presented at Nulnt11 (one NC, one CC) ...

Jorge G.Morfin - Fermilab

Coherent π Production Puzzle

- comprehensive review of theoretical calculations (L. Alvarez-Ruso, Nulnt11)
 - both PCAC and microscopic approaches
 - 12 different theoretical calculations
- do we see this process or not? NC/CC differences

ν NC coherent π^0

- K2K
- MiniBooNE
- NOMAD
- SciBooNE
- MINOS (D. Cherdak, new!)

all see some level of non-zero NC coherent π^0

MINOS Coherent π^0

- new data point in between existing low (K2K, MB, SB) and high energy (NOMAD) measurements
- 1^{st} measurement of NC coherent π^0 for A>30 and 1st evidence on iron
- also working on \overline{v} analysis

(D. Cherdak, Nulnt11) Jorge G.Morfin - Fermilab

Coherent π Production Puzzle

• do we see this process or not? NC/CC differences

 ν NC coherent π^0

- K2K
- MiniBooNE
- NOMAD
- SciBooNE
- MINOS (D. Cherdak, new!)

all see some level of non-zero NC coherent π^0

v CC coherent π^+ $\overline{v} CC$ coherent π^-

• K2K v

• SciBooNE ν

no evidence set limits

• SciBooNE \overline{v} (H. Tanaka, new!)

SciBooNE \overline{v} CC Coherent π^-

• 1^{st} modern measurement of coherent π production using antineutrinos

- <u>v̄ CC coh-π</u>: preliminary results
 - Cross section ratio ~2σ away from zero
 - Data hint that non-zero CC coh-π events in very forward region (than R-S model)

NC π^0 Production

(U. Mosel, NuInt11)

possible origins:

- elementary cross section too small
- neutrino-flux prediction (cf. discrepancy in QE channel)
- "data" contains "MC": model dependence
- suggestion of np-nh effects

Jorge G.Morfin - Fermilab

NC π^0 Production

(U. Mosel, NuInt11)

possible origins:

- elementary cross section too small
- neutrino-flux prediction (cf. discrepancy in QE channel)
- "data" contains "MC": model dependence
- suggestion of np-nh effects

• what about FSI?

• certainly need to understand before drawing any conclusions about np-nh in π channels

Total CC Inclusive

- 1st measurement of CC inclusive σ on ¹²C at low energy from SciBooNE
- important because measures combination of:

+ QE
+ np-nh
+
$$\Delta$$
, N* $\rightarrow \pi$
+ Δ , N* $\rightarrow 1\pi$, multi- π
+ DIS ...

(Y. Nakajima, Nulnt11)

Total CC Inclusive

- provides an important starting point (before get to exclusive modes)
- already being used by theorists ...

(L. Alvarez-Ruso, NuInt11)

Jorge G.Morfín - Fermilab

Total CC Inclusive

- provides an important starting point (before get to exclusive modes)
- already being used by theorists ...

Next steps:

- $d^2\sigma/dT_\mu d\theta_\mu$
- A dependence (how evolves with nuclear target)

(L. Alvarez-Ruso, NuInt11)

Jorge G.Morfín - Fermilab

W < 2 GeV - What's left for NF-ND?

- What you'll hear often from this summary: To get maximal new neutrino scattering physics results from the NF-ND we need a hydrogen/deuterium target. Need to measure well the basic non-nuclear cross sections.
- A hydrogen/deuterium target is also very helpful to pin down the flux by measuring the QE cross section near Q² = 0!
- Most of the high-Q² effects will not be studied by the time of the NF-ND
- The high resolution tracker will be able to add considerably to our knowledge of the transition region: from the Delta through the non-perturbative QCD region to pQCD.

The Parameters of ν DIS

Differential cross section in terms of structure functions:

$$\frac{1}{E_{v}}\frac{d^{2}\sigma^{v(\bar{v})}}{dxdy} = \frac{G_{F}^{2}M}{\pi\left(1+Q^{2}/M_{W}^{2}\right)^{2}} \left[\left(1-y-\frac{Mxy}{2E_{v}}+\frac{y^{2}}{2}\frac{1+4M^{2}x^{2}/Q^{2}}{1+R(x,Q^{2})}\right)F_{2}^{v(\bar{v})}\pm \left(y-\frac{y^{2}}{2}\right)xF_{3}^{v(\bar{v})}\right]$$

Structure Functions in terms of parton distributions (for v-scattering)

33

$$F_{2}^{\nu(\bar{\nu})N} = \sum \left[xq^{\nu(\bar{\nu})N}(x) + x\bar{q}^{\nu(\bar{\nu})N}(x) + 2xk^{\nu(\bar{\nu})N}(x) \right]$$

$$xF_{3}^{\nu(\bar{\nu})N} = \sum \left[xq^{\nu(\bar{\nu})N}(x) - x\bar{q}^{\nu(\bar{\nu})N}(x) \right] = x(d_{\nu}(x) + u_{\nu}(x)) \pm 2x(s(x) - c(x)),$$

$$R = \frac{\sigma_{L}}{\sigma_{T}}$$

Neutrino Experiments have been studying QCD for about 40 years

- For example, Gargamelle made one of the first measurements of Λ_{ST} in the early 1970's using sum rules and the x-Q² behavior of the structure functions F₂ and xF₃ measured off heavy liquids.
- BEBC followed with QCD studies using v + p and v + D scattering.

Most "Recent" DIS Experiments

 There followed a long string of v scattering experiments with increasing statistics and decreasing systematic errors

	E _v range (< E _v >) (GeV)	Run	Target A	Ε _μ scale	E _{HAD} scale	Detector
NuTeV (CCFR)	30-360(120)	96-97	Fe	0.7%	0.43%	Coarse
NOMAD	10-200(27)	95-98	Various (mainly C)			Fine- grained
CHORUS	10-200(27)	95-98	Pb	2%	5%	Fine- grained
MINOS	3-15	05-10	Fe	2.5%	5.6%	Coarse

NuTeV CC Differential Cross Section $d\sigma/dy$ for different E_v

	E_{μ} scale	E _{HAD} scale	E _∿ range (GeV)
CDHSW	2%	2.5%	20-200
CCFR	1%	1%	30-360
NuTeV	0.7%	0.43%	30-360

 NuTeV has increased statistics compared to other v-Fe experiments.

 \blacklozenge Significant reduction in the largest systematic uncertainties : - E_{μ} and E_{HAD} scales

Estimated systematic error: E_{μ} scale NuTev achieved 0.7%

37

Estimated systematic error: E_{had} scale

38

F_2 and xF_3 Measurement

Radiative corrections applied
Isoscalar correction applied

NuTeV F_2 Measurement

• At x > 0.4 NuTeV is systematically above CCFR

• Comparison of NuTeV F_2 with global fits NuTeV CCFR --0 0.2 x=0.015 CTEQ6M 0.1 CTEO5HO1 Ö ARST2001E+σ -0.1 /RST2001E-σ MRST2001E -0.2 0.1 x=0.045 x=0.080 0.05

NuTeV xF_3 Measurement

At x>0.5 NuTeV is systematically above CCFR
NuTeV F₂ agrees with theory for medium x.
At low x different Q² dependence.
At high x (x>0.5) NuTeV is systematically higher.

CHORUS Structure Functions: v Pb

First v-Pb differential cross section and structure functions

- CHORUS measurement favors CCFR over NuTeV
- Much larger systmatic errors than the NuTeV experiment ⁴²

Parton Distribution Functions:

What Can We Learn With All Six Structure Functions?

Recall Neutrinos have the ability to directly resolve flavor of the nucleon's constituents:

Using Leading order expressions: $F_{2}^{VN}(x,Q^{2}) = x\left[u + \overline{u} + d + \overline{d} + 2\overline{s} + 2c\right]$ $F_{2}^{VN}(x,Q^{2}) = x\left[u + \overline{u} + d + \overline{d} + 2\overline{s} + 2c\right]$ $xF_{3}^{\overline{V}N}(x,Q^{2}) = x\left[u + d - \overline{u} - \overline{d} - 2\overline{s} + 2c\right]$ $xF_{3}^{\overline{V}N}(x,Q^{2}) = x\left[u + d - \overline{u} - \overline{d} - 2\overline{s} + 2c\right]$

Taking combinations of the Structure functions

$$F_{2}^{v} - xF_{3}^{v} = 2(\overline{u} + \overline{d} + 2\overline{c})$$

$$F_{2}^{\overline{v}} - xF_{3}^{\overline{v}} = 2(\overline{u} + \overline{d} + 2\overline{s})$$

$$xF_{3}^{v} - xF_{3}^{\overline{v}} = 2[(s + \overline{s}) - (\overline{c} + c)]$$

43

Summary v Scattering Results – NuTeV

NuTeV accumulated over 3 million neutrino / antineutrino events with $20 \le E_v \le 400$ GeV.

NuTeV considered 23 systematic uncertainties.

NuTeV σ agrees with other ν experiments and theory for medium x. At low x different Q² dependence. At high x (x>0.6) NuTeV is systematically higher.

NuTeV extracts the strange quark distribution via charm production using both v and \overline{v} and gets a value of S⁻(x)

All of the NuTeV Results are for v − Fe interactions and where necessary have assumed the nuclear corrections for neutrino interactions are the same as I[±]. <u>Is this really the case?</u> 44

Nuclear Effects in Neutrino Interactions

- Target nucleon in motion spectral functions (Benhar et al.)
- Certain reactions prohibited Pauli suppression
- Quasi-elastic form factors are modified within the nuclear environment. (Butkevich/Kulagin, Tsushima et al.)
- Meson exchange currents short-range correlations
- Produced topologies are modified by final-state interactions modifying topologies and reducing detected energy.
 - Convolution of $\delta\sigma(n\pi)$ formation zone uncertainties π -absorption uncertainties yield larger oscillation-parameter systematics
- Cross sections and structure functions are modified and parton distribution functions within a nucleus are different than in an isolated nucleon. Observations from an on-going CTEQ analysis.

Nuclear Effects

- complication in modern experiments which use nuclear targets
- complex FSI modeled by event generators in a variety of ways

Jorge G.Morfin - Fermilab

Improved FSI Model in NEUT

Jorge G.Morfín - Fermilab

GENIE FSI Model

- next GENIE will have new hA & hN models (GENIE v2.8)
- even with a schematic model can fit a lot of features

(S. Dytman, NuInt11)

Tests of GENIE with CLAS Data

tests modeling of initial interaction tests modeling of FSI and nuclear effects

• side by side comparison is very nice!

Tests of GENIE with CLAS Data

 ν data compared to NUANCE e^- data compared to GENIE

• generators seem to underpredict lowest momentum π 's

Jorge G.Morfin - Fermilab

Nuclear Structure Function Corrections l^{\pm} (Fe/D₂)

• F_2 / nucleon changes as a function of A. Measured in μ /e - A, **not in \nu – A**

- Reason to consider nuclear effects are DIFFERENT in v A.
 - Presence of axial-vector current.
 - Different nuclear effects for valance and sea --> different shadowing for xF₃ compared to F₂.

Nuclear PDFs from neutrino deep inelastic scattering

I. Schienbein (SMU & LPSC-Grenoble, J-Y. Yu (SMU) C. Keppel (Hampton & JeffersonLab) J.G.M. (Fermilab), F. Olness (SMU), J.F. Olness (Florida State U)

e-Print: arXiv:0710.4897 [hep-ph]

Use the NuTeV neutrino / antineutrino data presented earlier

Make Our Own "D₂" (n+p)

 Form reference fit mainly nucleon (as opposed to nuclear) scattering results:

- BCDMS results for F₂^p and F₂^d
- NMC results for F₂^p and F₂d/F₂^p
- H1 and ZEUS results for F₂^p
- CDF and DØ result for inclusive jet production
- CDF results for the W lepton asymmetry
- E-866 results for the ratio of lepton pair cross sections for pd and pp interactions
- E-605 results for dimuon production in pN interactions.

Correct for deuteron nuclear effects

- All high-statistics neutrino data is off nuclear targets. Need nuclear correction factors to include data off nuclei in fits with nucleon data.
- Nuclear correction factors (R) might be different for neutrino-Fe scattering compared to charged lepton-Fe. Current results are from one experiment on one nuclear target... careful.
- There are many physics topics that will be awaiting the intensity and precision of a highresolution detector in the high-intensity neutrino factory flux to give us the results we need.!