Charm production in neutrino interactions as background source to oscillation signal and as a physics measurement on its own

Pasquale Migliozzi - INFN Napoli

NearDetector WG- CERN 30-31/July/2011

ν DIS charm production

 \Rightarrow large s contribution: \approx 50% in v and \approx 90% in anti-v

Dimuon available statistics

CDHS (CERN WBB) $9922 \ \mu^{\mu} \mu^{+}$, $2123 \ \mu^{+}\mu^{-}$ eventsZeitschr. Phys. C (1982)19-31CCFR (NuTeV) $5044 \ \mu^{-}\mu^{+}$, $1062 \ \mu^{+}\mu^{-}$ eventsZeitschr. Phys. C (1995)189-198CHARMII (CERN WANF) $4111 \ \mu^{-}\mu^{+}$, $871 \ \mu^{+}\mu^{-}$ eventsEur. Phys. J., C11 (1999)19-34NOMAD (CERN WANF) $2714 \ \mu^{-}\mu^{+}$, $115 \ \mu^{+}\mu^{-}$ eventsPhys.Lett.B486:35-48,2000CHORUS (CERN WANF) $8910 \ \mu^{-}\mu^{+}$, $430\mu^{+}\mu^{-}$ eventsNucl..Phys.B798:1-16,2008

High statistics, but:

Background due to π , K, K^o_s

Cross section measurement depends on knowledge of BR (C \to μ) ~ 10% and on the uncertainty on it

Dimuon cross-section (CHORUS)

"Micrometric" experiments

These experiments study charm production by looking "directly" at the decay topology of the charmed hadron with micrometric resolution

Contra: none, but the difficulty of achieving the expected resolution

> Pro: low background; sensitivity to low $E_v \Rightarrow m_c$ thr. effect;

reconstruction of the charmed hadron kinematics (direction and momentum) ⇒fragmentation studies are possible

Air-core magnet

 $\Delta p/p = 0.035 p (GeV/c) \oplus 0.22$

Active target

nuclear emulsion target (770kg)
scintillating fiber trackers

Muon spectrometer

∆p/p = 10 - 15% (p < 70 GeV/c)

Calorimeter

(with lead and scintillating fibers, 112 ton) $\Delta E/E = 32 \%/\sqrt{E}$ (hadrons) $= 14 \%/\sqrt{E}$ (electrons) $\Delta \theta_{h} = 60 \text{ mrad } @ 10 \text{ GeV}$

ν

The CHORUS charged current data sample and charm subsample

Located CC events 93807

Total confirmed charm candidates 2013

Measurement of D⁰ production

 $\sigma(D^0)/\sigma(CC)=0.0269 \pm 0.0018 \pm 0.0013$

The relative rate is:

Phys. Lett. B. 613 (2005) 105

Charm mass fit

 m_c =1.42±0.08 GeV/c²

Fit parameters for the model curve

(M.Gluk, E.Reya and A.Vogt, Z.Phys.C (1955) 433)

Variables	Value	Variation
$m_{ m c}$	$(1.42 \pm 0.08) \text{ GeV}/c^2$	fitted
κ	0.38	± 0.10
α	1	± 1
$\epsilon_{\rm p}^{\rm s}$	$0.083 \pm 0.013 \pm 0.010$	± 0.02
$V_{\rm cd}$	0.221	fixed
$V_{\rm cs}$	0.97437	fixed

(ϵ^{s}_{p} as measured in CHORUS, see next slides)

At 27 GeV average neutrino beam

Measurement of D⁰ production UPDATE

The D^0 analysis is based on the BR(D^0 ->4prongs) that has been recently updated in the PDG. With the new value the cross-section becomes

$\sigma(D^0)/\sigma(CC)=0.0252 \pm 0.0017 \pm 0.0012$

It has also an impact on the full neutral branching ratio

BR(D⁰-> all neutrals) = $0.17 \pm 0.06 \pm 0.03$

Impact on the muonic braching ratio

 $B_{\mu} = (8.1 \pm 0.9 \pm 0.2)\%$

that is consistent with the value measured with dimuon event analysis

 $B_{\rm u} = (9.6 \pm 0.4 \pm 0.8)\%$

From charm quark to charmed hadrons

Z defined as the ratio of the energy of the charmed particle E^D and the energy transfer to the hadronic system $v : z = E^D / v$

$$\frac{d^{4}\sigma(v_{\mu}N \to \mu^{-}CX)}{d\xi dy dz dp_{T}^{2}} = \frac{d^{2}\sigma(v_{\mu}N \to \mu^{-}cX)}{d\xi dy} \times \sum_{h} f_{h} \times D_{c}^{h}(z, p_{T}^{2})$$

$$D_{c}(z) = N \frac{\left(\frac{1-z}{z} + \frac{\varepsilon_{c}(2-z)}{1-z}\right)}{\left(1 - \frac{1}{z} - \frac{\varepsilon_{c}}{1-z}\right)^{2}} \left(1 + z^{2}\right)$$

Collins-Spiller J.Phys. G 11 (1985) 1289

Measurement of fragmentation properties of charmed particle production in CC neutrino interaction

Momentum distribution of D⁰'s produced inclusively in CHORUS

Fit to Collins-Spiller distribution:

 $\varepsilon_{cs} = 0.21^{+0.05}_{-0.04} \pm 0.04$

Fit to Peterson distribution:

 $\epsilon_{P} = 0.083 \, \pm \, 0.013 \, \pm \, 0.010$

Zdistribution

$<z> = 0.63 \pm 0.03(stat) \pm$

Experiment	$\langle z \rangle$	ϵ_P and ϵ_{CS}
CDHS[2]	0.68 ± 0.08	$\epsilon^Q_P = [0.02, 0.14]$
E531[6]	0.59 ± 0.04	$\epsilon_P = 0.076 \pm 0.014$
CCFR[4]	0.56 ± 0.03	$\epsilon_P = 0.22 \pm 0.05$
		$\epsilon_{CS} = 0.88 \pm 0.12$
BEBC[5]	$0.59 \pm 0.03 \pm 0.08$	-
CHARM II[3]	0.66 ± 0.03	$\epsilon^Q_P = 0.072 \pm 0.017$
NOMAD[7]	$0.67 \pm 0.02 \pm 0.02$	$\epsilon_P^Q = 0.075 \pm 0.028 \pm 0.036$
		$\epsilon_{CS} = 0.13 \pm 0.08 \pm 0.11$
NuTeV[8]	_	$\epsilon_{CS} = 2.07 \pm 0.31$

Measurement of inclusive charm production

Measurement of charm production in neutrino charged-current interactions. CHORUS Collaboration, CERN-PH-EP-2011-109. Jul 2011. 16 pp. e-Print: arXiv:1107.0613 [hep-ex]

Charmed fractions and inclusive topological branching ratios

$$f_{D0} = (43.7 \pm 4.5)\%$$

$$f_{D+} = (25.3 \pm 4.4)\%$$

$$f_{Ac+} = (19.2 \pm 4.2)\%$$

$$f_{Ds+} = (11.8 \pm 4.7)\%$$

Likelihood fit to flight length over momentum distribution to obtain the charm production fractions

BR(C⁺ → 1 prong) =(64 ± 10)% BR(C⁺ → 3 prong) =(35 ± 6)% BR(C⁺ → 5 prong) =(1.4±0.3) %

BR(D⁰ → fully neutrals) =($17 \pm 6 \pm 3$)% BR(D⁰ → 2 prong) =(69.1 ± 3.3)% BR(D⁰ → 4 prong) =(14.3 ± 0.5)% (PDG)

Measurement of charm production in antineutrino charged-current interactions

Associated charm production

3 observed events in NC sample

Quasi-elastic charm production

Phys.Lett.B 575 (2003) 198 based on 46105 v_{μ} CC

a) $\nu_{\mu} n \rightarrow \mu^{-} \Lambda_{c}^{+}$ b) $\nu_{\mu} n \rightarrow \mu^{-} \Sigma_{c}^{+} (\Sigma_{c}^{*+})$ c) $\nu_{\mu} p \rightarrow \mu^{-} \Sigma_{c}^{++} (\Sigma_{c}^{*++})$

Topological and kinematical selection criteria:

- Require 2 or 3 tracks at primary vertex
- $\Phi \ge 165^{\circ}$ (angle between muon and charm in the transverse plane)
- Flight length < 200 μ m (enriched Λ c sample)
- Calorimeter energy < 10 GeV and electromagnetic energy < 2 GeV
 - 13 events with a background of 1.7 \pm 0.6 (mainly from DIS Λc)

$$\frac{\sigma_{QEcharm}}{\sigma_{CC}} = 0.23^{+0.12}_{-0.06} (\text{stat})^{+0.02}_{-0.03} (\text{syst})\%$$

QE production is about 15% of Λc production

Why we should measure more accurately QE charm production?

Λ_c^+ BRANCHING FRACTIONS

Revised 2002 by P.R. Burchat (Stanford University).

Most Λ_c^+ branching fractions are measured relative to the decay mode $\Lambda_c^+ \to p K^- \pi^+$. However, there are no completely model-independent measurements of the absolute branching fraction for $\Lambda_c^+ \to p K^- \pi^+$. Here we describe the measurements that have been used to extract $B(\Lambda_c^+ \to p K^- \pi^+)$, the model-dependence of the results, and the method we have used to average the results.

...However, it is also stressed that this number is rather arbitrary. Indeed Ref. [2] advocates method B suggesting that one should reanalyze the Bbar decay channels. As a result, if this interpretation is correct, then:

- (i). heavy baryon tables would change;
- (ii). measured charm counting in b-decay would decrease;
- (iii). Bbar \rightarrow baryon decay models should be reanalyzed.

A model independent measurement is possible by exploiting QE charm production

A Direct evaluation of the Lambda+(c) absolute branching ratios: A New approach. P. Migliozzi, G. D'Ambrosio, G. Miele and P. Santorelli Published in Phys.Lett. B462 (1999) 217-224

Table 5						
Accuracy achievable (ΔBR), assuming a 100% error on \Re , as a function of the collected charged-current statistics						
Channel	$N_{\mu} = 10^{6}$	$N_{\mu} = 10^{5}$	$N_{\mu} = 10^{4}$			
$\Lambda_c^+ \rightarrow p \overline{K}^0$	$(\pm 0.2 \pm 0.05)\%$	(±0.6±0.05)%	$(\pm 1.8 \pm 0.05)\%$			
$\Lambda_c^+ \rightarrow pK^- \pi^+$	$(\pm 0.3 \pm 0.09)\%$	$(\pm 0.9 \pm 0.09)\%$	$(\pm 2.8 \pm 0.09)\%$			
$\Lambda_c^+ \rightarrow p \overline{K}{}^0 \eta$	$(\pm 0.1 \pm 0.02)\%$	$(\pm 0.5 \pm 0.02)\%$	$(\pm 1.7 \pm 0.02)\%$			
$\Lambda_c^+ \rightarrow p \overline{K}^0 \pi^+ \pi^-$	$(\pm 0.2 \pm 0.04)\%$	$(\pm 0.6 \pm 0.04)\%$	$(\pm 1.0 \pm 0.04)\%$			
$\Lambda_c^+ \rightarrow pK^- \pi^+ \pi^0$	$(\pm 0.3 \pm 0.08)\%$	$(\pm 0.9 \pm 0.08)\%$	$(\pm 2.8 \pm 0.08)\%$			
$\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^0$	$(\pm 0.2 \pm 0.06)\%$	$(\pm 0.8 \pm 0.06)\%$	$(\pm 2.3 \pm 0.06)\%$			
$\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^+ \pi^-$	$(\pm 0.2 \pm 0.06)\%$	$(\pm 0.7 \pm 0.06)\%$	$(\pm 2.3 \pm 0.06)\%$			
$\Lambda_c^+ \rightarrow \Lambda \pi^+ \eta$	$(\pm 0.2 \pm 0.03)\%$	$(\pm 0.5 \pm 0.03)\%$	$(\pm 1.7 \pm 0.03)\%$			
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$	$(\pm 0.1 \pm 0.02)\%$	$(\pm 0.4 \pm 0.02)\%$	$(\pm 1.0 \pm 0.02)\%$			
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-$	$(\pm 0.2 \pm 0.06)\%$	$(\pm 0.7 \pm 0.06)\%$	$(\pm 2.3 \pm 0.06)\%$			
$\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+$	$(\pm 0.2 \pm 0.03)\%$	$(\pm 0.5 \pm 0.03)\%$	$(\pm 1.7 \pm 0.03)\%$			
$\Lambda_c^+ \rightarrow \Sigma^0 \pi^+ \pi^0$	$(\pm 0.2 \pm 0.03)\%$	$(\pm 0.5 \pm 0.03)\%$	$(\pm 1.7 \pm 0.03)\%$			
$\Lambda_c^+ \rightarrow \Sigma^0 \pi^+ \pi^+ \pi^-$	$(\pm 0.1 \pm 0.02)\%$	$(\pm 0.4 \pm 0.02)\%$	$(\pm 1.0 \pm 0.02)\%$			
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^+ \pi^- \pi^0$	$(\pm 0.2 \pm 0.05)\%$	$(\pm 0.7 \pm 0.05)\%$	$(\pm 2.2 \pm 0.05)\%$			
$\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_\mu$	$(\pm 0.2 \pm 0.04)\%$	$(\pm 0.6 \pm 0.04)\%$	$(\pm 1.8 \pm 0.04)\%$			
$\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$	$(\pm 0.2 \pm 0.04)\%$	$(\pm 0.6 \pm 0.04)\%$	$(\pm 1.8 \pm 0.04)\%$			

A Near Detector at a NuFact could perform this measurement

 $\mu^+ \nu_\mu \nu_\tau$

Diffractive D_s production @NuFact

$$rac{\overline{s}}{c}$$
 w^+ τ^+

$$BR\left(D_{s} \rightarrow l^{-}\overline{\nu}_{l}\right) = \frac{G_{F}^{2}}{8\pi} \times |V_{Qq}|^{2} \times f_{D_{s}}^{2} \times \tau_{D_{s}} M_{D_{s}} \times m_{l}^{2} \times \left(1 - \frac{m_{l}^{2}}{M_{D_{s}}^{2}}\right)^{2},$$

Once the absolute value of f_{Ds} is measured with an accuracy of 10% or better, one would feel more confident about the predictions of the decay constants in the B system, f_B and f_{Bs} , which are crucial quantities for a quantitative understanding of $B^0_{(s)}$ bar $-B^0_{(s)}$ oscillations and the extraction of V_{td} (V_{ts}) from them.

Absolute determination of D(s) branching ratios and f(D(s)) extraction at a neutrino factory. G. De Lellis, P. Migliozzi, P. Zucchelli. Published in Phys.Lett. B507 (2001) 7-13

30% error

Dু→I

Dੂ→r

BES [17]

L3 [18]

430⁺¹⁵⁰-130^{±40}

309±58±33±38

Charm cross-section at Neutrino Factory energies

$$\frac{N_{CHARM}}{N_{CC}} = \frac{\int \Phi_{\nu_l}(E)\sigma^{CC}(E)\frac{\sigma(Charm)}{\sigma^{CC}}(E)dE}{\int \Phi_{\nu_l}(E)\sigma^{CC}(E)dE}$$

Calculation inputs:

- Neutrino Factory Flux from 50 GeV muon decay with polarization $P_{\mu}=0$
- Oscillation probability
- Charm cross section as function of energy from CHORUS
- world average neutrino CC cross-section

Charm cross-section at Neutrino Factory energies

neutrino charm production

 $\sigma(v_e N \rightarrow e^- Charm X) / \sigma(CC) = (5.85 \pm 0.36)\%$ $\sigma(v_e N \rightarrow e^- C^+ X) / \sigma(CC) = (3.12 \pm 0.20)\%$

Anti-neutrino charm production

 $\sigma(\bar{\nu}_{\mu}N \rightarrow \mu^{+}\overline{Charm} X)/\sigma(CC)=(4.89\pm1.72)\%$

The importance of measuring charms (OPERA case)

Topology	Observed events	Expected events		
		Charm	Background	Total
Charged 1-prong	13	15.9	1.9	17.8
Neutral 2-prong	18	15.7	0.8	16.5
Charged 3-prong	5	5.5	0.3	5.8
Neutral 4-prong	3	2.0	<0.1	2.1
Total	39	39.1±7.5	3.0±0.9	42.2±8.3

Conclusions

 More than 2000 charm events collected by CHORUS experiments out of 93807 CC events

• Charm (charged and neutrals) inclusive cross-section, Semi-leptonic branching ratio, D* production, Fragmentation parameters, associated charm production measured

• First direct measurement of charm induced by anti-neutrino (32 events)

• CHORUS measurements can be used for charm background prediction in the future golden and silver channel investigations

• We have now solid reference numbers to evaluate the background and the efficiency of experiments operating at future neutrino facilities

• Mandatory experiments looking "directly" at the decay topology of the charmed hadron with micrometric resolution