Deep Inelastic Scattering 2025

Contribution ID: 136 Type: not specified

An overview of the test station involved in the production of the LVPS Bricks for the Phase II upgrade of the ATLAS Tile Calorimeter

Wednesday 26 March 2025 11:00 (22 minutes)

The Phase II upgrade of the ATLAS experiment at CERN represents a significant advancement in preparing for the High Luminosity Large Hadron Collider (HL-LHC) era. This upgrade includes substantial enhancements to the detector, particularly the integration of radiation-resistant transformer-coupled buck converters, referred to as Low Voltage Power Supply (LVPS) bricks. A thorough quality assurance process is being implemented to improve the reliability of LVPS bricks within the ATLAS Hadronic Tile-Calorimeter (TileCal). In partnership with the University of the Witwatersrand and iThemba LABS, more than a thousand LVPS bricks will be developed. These bricks are essential for converting 200 V direct current (DC) power into the 10 V DC power needed for detector operation. Extensive initial testing of these bricks is critical to ensure their reliability and performance under the challenging conditions anticipated in the HL-LHC era, including high radiation levels, increased trigger rates, and substantial pile-up. The next phase will involve gathering and analysing test data using advanced machine learning techniques. This data-driven approach will offer deeper insights into the bricks' behaviour under extreme conditions, enabling the optimization of their design and performance to meet the demanding requirements of the HL-LHC.

Authors: KUMAR, Mukesh (University of the Witwatersrand (ZA)); CHABALALA, Vongani Cyril (University of the Witwatersrand (ZA)); CHABALALA, Vongani Cyril (University of the Witwatersrand (ZA))

Presenters: KUMAR, Mukesh (University of the Witwatersrand (ZA)); CHABALALA, Vongani Cyril (University of the Witwatersrand (ZA))

Session Classification: WG6: Future Experiments

Track Classification: Future Experiments