7.5a: TDAQ Overview

Yun-Tsung Lai, Alex Keshavarzi

on behalf of 7.5a group

KEK IPNS, the University of Manchester

ytlai@post.kek.jp

3rd DRD7 workshop

10th Sep., 2024

- The 7.5a project is for:
 - TDAQ backend in HEP experiments
 - Hardware device: keep pace with COTs technologies (CPU, GPU, FPGA).
 - Software/firmware development: generic algorithms, workflows, or design tools for TDAQ real-time processing.
 - Technique sharing: Open-access, repository-hosted infrastructure for these commonly used tools and algorithms.
 - In each experiment, usually not so many TDAQ experts, especially their expertise are separated for various techniques: Collaboration crossing experiments can help to collect the technical knowledge complementary to each other, and to form a comprehensive database for future activity.
- COTs:
 - New technology with better performance.
 - But we (TDAQ people in exp. HEP) usually requires customized design for experimental purpose.
 - In some senses, more effort in R&D process.
 - Benefit: IP, libraries, and package directly from vendors provides more convenience in manual software/firmware design. Technical supports from industry.

7.5a members

• 14 sub-groups in 7.5a

Science and Technology Facilities Council

Universidad de Oviedo

UNIVERSITY^{OF} BIRMINGHAM

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

The University of Manchester

UNIVERSITÉ

DE GENÈVE

Activities within 7.5a

- In principle, everyone in 7.5a is working on **Trigger**.
 - The development involves
 - Algorithm/Physics
 - Software/Firmware framework
 - Hardware device.

	Relatively coupled		
Physics/ Algorithm	Software/ Firmware	Hardware	
 Tracking Calo clustering Topology Anomaly detection 	 Software coding ML framework HDL HLS ML inference 	CPUGPUFPGA	

- Other than trigger, there are also
 - DAQ: readout, FEE, etc
 - Generic development for fundamental purpose: **firmware optimization/maintenance**, etc.

Activities within 7.5a (cont'd)

- Considering the trend, two major types of **Trigger** systems for real-time processing/filter:
 - A very personal point of view, as the boundary in between is getting vague nowadays.

computing farm. In addition to CPU/GPU, FPGA acceleration is a new application. <u>Keywords</u>: Hardware acceleration platforms with CPU/GPU/FPGA, Alveo, Versal acceleration card, Versal DPU.

Collaboration within 7.5a

- · How do we work together?
- The physics/algorithm part is mostly dedicated to experiment purpose, so the source codes might not be suitable to be shared.
- The framework of software/firmware + hardware is expected part to share.
 - The major core technique for TDAQ experts.
 - The unique core technique from each sub-group.
 - A git repository has been prepared for maintenance purpose. The contribution from each sub-group is under discussion within 7.5a.

Take FPGA as example

- This technical roadmap was proposed by KEK IPNS group. We are trying to cover most of the methodologies here to build a knowledge database.
- In addition to sharing the framework by git, holding workshop for hand-on practice is also one way to consider as a 7.5a activity.

Overview on our activities

• A rough categorization

Low-level: short latency with FPGA (PL)

Birmingham: ATLAS L1/global

<u>RAL</u>: e/gamma and tau trigger btw. BDT and hand crafted algorithm

<u>KEK IPNS</u>: Versal for Belle II and ATLAS trigger

<u>UCM-GAE</u>: ML in FPGA for CTAO camera

<u>Bristol</u>: CMS L1, medical imaging, anomaly, CNN at Versal

> <u>Oviedo</u>: GNN for realtime muon reconstruction algorithm with Versal

<u>Geneva</u>: QDIPS FPGA b-tagging

<u>CIEMAT</u>:CMS muon trigger, short-latency, AI in FPGA

High-level: Acceleration with GPU/FPGA

<u>KEK IPNS</u>: Versal DPU for HLT application

IFIC Valencia: ATLAS and LHCb trigger with different acceleration platforms

<u>UCL</u>:ML-based trigger/tracking with GPU/FPGA ATLAS global electron trigger

Birmingham: ATLAS L1 with FPGA/GPU

Manchester: ML data compression on FPGA with neutrino data and ATLAS jet data

> <u>Geneva</u>: ATLAS calos topoclustering FPGA acceleration

<u>RAL</u>: traccc with Intel/Altera FPGA

DAQ/readout

KEK IPNS: PCIe readout with Versal

<u>ANL</u>: Full system for future detector readout

<u>CIEMAT</u>: CMS Drift Tube readout

Other than Trigger/DAQ

<u>Birmingham</u>: HOG for HDL in git <u>RAL</u>: IPBus, IPPB, and Versal techniques

IFIC Valencia, Oviedo: MC generator with GPU/FPGA

UCL: COTs PMT

Manchester: Q-Pix for FEE with COTs CMOS

<u>CIEMAT</u>: FPGA firmware optimization

2024/09/10

- Experience in various ATLAS systems:
 - ATLAS Readout (aka FELIX) for the Run-3 and Run-4
 - Readout firmware of the ATLAS Global Trigger System for the Run-4
 - Data processing firmware for the Event Filter Track trigger
 - ATCA board design and firmware for FTK to Level-2 Interface Card (FLIC)
 - ATLAS Region of Interest Builder Board (RoIB): board design and firmware
 - PC-based RoIB: software development
- Interests:
 - Full system and digital design for the future detector readout systems
 - High-speed links
 - Low-latency data processing
 - Intelligent high-bandwidth data processing
 - Data flow and online software

CIEMAT: Firmware optimization

* GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

- CMS Drift Tube readout and Muon Trigger for the HL-LHC:
 - Very low latency complex trigger algorithms development
 - AI optimization on FPGAs
- Highly-optimized FPGA algorithms for performance.
 - High clock speeds (~500 MHz) timing closure
 - Knowing how to write "good firmware code" is critical for developer!
- Features:
 - TCL constraints file
 - FPGA resources and modules utilization, auto size pblocks
 - Customized application for the entire user design
 - · Maintainable for user design's upgrade
 - Mostly ready for the community.

<pre>link_frame_monitoring SSDSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS</pre>					
Resource util	lization:				
dsp			120	(0.0%)	
ff	2650		38400	(6.9%)	
lut	530		19200	(2.8%)	
bram	19		36	(52.8%)	
ultraram	0	1	0	(0.0%)	

create_pblock S1_link_frame_monitoring resize_pblock S1_link_frame_monitoring -add { SLICE_X0Y480:SLICE_X39Y539 DSP48E2_X0Y192:DSP48E2_X4Y215 RAMB18_X0Y192:RAMB18_X2Y215 RAMB36_X0Y96:RAMB36_X2Y107 } set_property IS_SOFT FALSE [get_pblock S1_link_frame_monitoring] add_cells_to_pblock [get_pblock S1_link_frame_monitoring] [get_cells payload/ly1/g[1].g.sector/f.links_to_streams/d_muxed*] add_cells_to_pblock [get_pblock S1_link_frame_monitoring] [get_cells payload/ly1/g[1].g.sector/f.links_to_streams/clkstrobes_clkp] add_cells_to_pblock [get_pblock S1_link_frame_monitoring] [get_cells payload/ly1/g[1].g.sector/f.links_to_streams/pipe_phase_strobes_inst] add_cells_to_pblock [get_pblock S1_link_frame_monitoring] [get_cells payload/ly1/g[1].g.sector/f.links_to_streams/obdt_decoder_monitor] add_cells_to_pblock [get_pblock S1_link_frame_monitoring] [get_cells payload/ly1/g[1].g.sector/f.links_to_streams/obdt_decoder_monitor] add_cells_to_pblock [get_pblock S1_link_frame_monitoring] [get_cells payload/ly1/g[1].g.sector/f.links_to_streams/pote_frame/placeable*] add_cells_to_pblock [get_pblock S1_link_frame_monitoring] [get_cells payload/ly1/g[1].g.sector/f.links_to_streams/p404*]

- Computing acceleration for reconstruction algorithms in trigger and generator software in HEP.
 - Low Power consumption
- Various devices for study: Nvidia (Cuda) for GPU, Xilinx Alveo, Xilinx Versal, etc.
- Activities: mainly for ATLAS and LHCb
 - NN on Versal accelerator
 - Downstream tracking with GPUs
 - Matrix multiplication with ALVEO U250
 - Hardware power consumption
 - Signal reconstruction with ML with pile-up
 - "Faraway" tracking reconstruction
 - High-speed simulations with hardware accelerators
- More than trigger: Implement GPU and FPGA solution in MC generators.

CSIC

Vniver§itat d València

APC Metered Rack PDU ZeroU 2G AP8 SWITCH D-LINK DXS-1210-28T 24x 10GB GPUs server + CPU : T10G Dual Xeon Scalable HPC 10xGPU PCIe

KEK IPNS: Versal for future device

• KEK IPNS together with Nagoya Univ.

- Using Xilinx Versal for Trigger application for both L1 and HLT.
 - Target: new universal trigger device for Belle II and ATLAS.
 - Hardware acceleration with Versal DPU for HLT.
- Test benches with VPK120 and VCK190.
 - Study with PAM4 data link, PCIe Gen5, and AI engine.
- Trigger logic implementation for **Belle II and ATLAS**:
 - Tracking, clustering, topology, anomaly detection.
 - **Deployment in AI engine** is the main technical goal.
 - Comprehensive Methodology study for FPGA: HLS-based ML inference, AI engine, DPU, etc.

A CNN model deployed in AI engine

- Long contributions in ATLAS, CMS (both L1 and HLT), and DUNE with collaboration with many groups.
- Device:
 - FPGA: Xilinx Alveo and Intel Arria 10, Stratix 10
 - GPU: Various Nvidia
- Project:
 - e/gamma and tau low-level trigger algorithms
 - Improve the present existing one based on BDT and compare the performance with the hand crafted version.
 - SYCL-based tracking algorithm from traccc with Intel/Altera FPGA
 - IPbus: Ethernet protocol.
 - IPBB firmware build tool.
 - Extensive experience with Xilinx Versal: Plan to share the expertise with the colleagues.

UCL: GPU/FPGA ML trigger

- Experience in Data Acquisition in ATLAS for SCT, ITk, global, g-2 and mu2/3e, DUNE
- Target: ML-based trigger and tracking with GPU/FPGA
- Projects:
 - ML algorithms on Versal to improve ATLAS global electron trigger
 - BDT using XGBoost
 - Feature generation to ensure sym input
 - · Currently passed simulation stage
 - High bandwidth readout for ITk strip and pixel
- Other study with COTs: PMT device

[^]UCL

University of Birmingham: ATLAS L1 and HOG

- Long-term contribution on Trigger/DAQ. Mainly for ATLAS L1/global trigger, and involved in EIC and muon collider.
- Interested in general infrastructure for hardware trigger (e.g. hog, module control, etc) and efficient (ML-based) selection and compression algorithms
 - Various kinds of algorithms for the ATLAS L1 trigger: FPGA and GPU
 - Anti-kt like algorithm for various platform for ATLAS Global
 - Data compression algorithm with links to future tracking projects
 - ML-based ATLAS L1 calo.
- Other than trigger: HOG
 - Maintaining HDL in git repository
 - Available: https://gitlab.com/hog-cern/Hog
 - Documentation: http://cern.ch/hog

University of Bristol: CMS L1, ML@FPGA

- Experience in ML in FPGA.
- Device: Xilinx Versal and UltraScale

- CMS L1 trigger
 - Short latency
- Collaboration with North Bristol Trust for medical imaging/anomaly detection
- ML algorithms for data selection for 2D image
 - hls4ml with Xilinx Virtex UltraScale
- CNN on Xilinx VCK5000 v.s. CMS ATCA card

University of Geneva: ML with COTs

UNIVERSITÉ DE GENÈVE

EPYC

- Device: AMD CPU, Xilinx Versal and Alveo, Nvidia GPU
- Projects:
 - QDIPS: hls4ml FPGA demonstrator of Deep Sets b-tagging
 - Model used for early selection at the HLT on ATLAS
 - ATLAS calos topoclustering FPGA acceleration
 - Acceleration with FPGA for EFCalo (Run4)
 - FPGA integration in Athena framework

University of Manchester: ML data compression MANCHESTER

The University of Manchester

- Experience in trigger object analysis, tracking@GPU, ML@FPGA
- Device: Xilinx Versal and UltraScale

- Projects: ML-based data compression on FPGA with neutrino data and ATLAS jet data
 - Performance metrics for image compression
 - Anomaly detection
 - Data compression and zero suppression
 - Started with CPU/GPU, then plan at FPGA
- Other than trigger: Q-Pix. On chip digitization scheme for kTon TPC
 - On-chip "zero suppression" scheme
 - Front-end architecture with COTs CMOS

University of Oviedo: GNN in ACAP COTS

- Project: GNN for real-time (O(µs)) muon reconstruction algorithm
 - Targeting on implementation in Xilinx Versal ACAP and the AI engine.
- Other then trigger: MC generation with accelerated platforms
 - Parallelization on the CPU-intense steps
 - With GPU and FPGA
 - Compare the time and power consumption

100

60.

40.

20.

16:00

CPU usage of an

generation process

example MC

UCM-GAE: ML@FPGA for CTAO Telescopes

- Project: ML-based hardware trigger with FPGA for camera: EM Calorimeter.
- CNN models for IACT array-based gamma/hadron/Night-Sky-Background separation.
 - · Based on hls4ml.
- Test benches with with KCU kits.
- Home-made prototype board is also under design.

~2000 PMT-based camera

- 7.5a is aiming for common TDAQ development with COTs.
 - Mainly focus on trigger with various platforms.
 - Also generic development for fundamental purpose.
- Our collaboration will be based on the sharing of technical knowledge of
 - Software/firmware framework
 - Hardware device
 - Using git repository, or even hand-on workshop in the future
- Present activities:
 - PI: Alex Keshavarzi (Manchester), Yun-Tsung lai (KEK IPNS)
 - Monthly meeting on the first Friday of every month
 - Mailing list: ECFA-DRD7-PROJECT7_5_a-Contributors@cern.ch ECFA-DRD7-PROJECT7_5_a-Observers@cern.ch
- If you are interested in relevant research works and would like to join us, please do not hesitate to let us know!