DRD7 - WP7.3 - 4D & 5D TECHNIQUES

DRD 7.3a High Performance ADC and TDC blocks at ultra-low power

Marek Idzik

On behalf of the DRD 7.3a project team

DRD7: R&D Collaboration on Electronics and On-detector Processing. 3rd workshop 9-10 Sept 2024 CERN

Project description

Ultra-low power, area-efficient, fast Analog-to-Digital Converter (ADC) and precise Time-to-Digital Converter (TDC) are two indispensable blocks of a SoC-type readout ASIC

The aim of DRD7.3a project is to develop a high performance ADCs and TDCs. In addition, other circuits directly interacting with them, such as analog front-ends, discriminators, fully differential amplifiers or serializers&data transmitters may be part of this project

For HEP applications the technologies commonly adopted by the particle detector community, i.e. CMOS processes 130/65 nm and 28 nm are primarily used

The performance of ADC/TDC block, mainly resolution and power, strongly depends on the technology used. One of the main goals for each block is a very good Figure of Merit, compared to state-of-art developments in the same technology

Organization - Members

AT: TU Graz

ES: ICCUB

EXCELENCIA MARÍA DE MAEZTU 2020-2023

FR: CEA IRFU, CPPM, IP2I, OMEGA

US: SLAC

Organization...

- By now two zoom meetings
 - 1st meeting January 2024
 - 2nd meeting last week (4/9/2024), https://indico.cern.ch/event/1449737/
- Project lead (temporarily)
 - Project lead Marek Idzik
 - Deputy...

Proposed Milestones and Delvirables

M7.3a1 (M12) - Submission of ADCs and related blocks

- M7.3a2 (M12) Submission of TDCs and related blocks
- M7.3a3 (M24) Tests of ADCs and related blocks
- M7.3a4 (M24) Tests of TDCs and related blocks
- D7.3a1 (M36) Demonstrator ADC ASICs
- D7.3a2 (M36) Demonstrator TDC ASICs

Progress Report

Update on ongoing activities of different groups presented during last zoom meeting 4/9/2024

Quick flash of recent results is given – not all activities of different groups are shown here

R&D in different groups are done in frameworks of different projects – not only DRD7.3a

Resources – more complicated – no statements yet...

Progress Report - AGH R&D on 10-bit ADC in 130nm with internal threshold

Existing 10-bit SAR ADC consumes
 680uW@40MSps & works <= 50MSps

To decrease power consumption even further, additional internal threshold is added - to make a full conversion only for signal and not for noise

 In worst case 2 additional comparisons are added

The modified ADC is a bit slower, but

- Estimated power for low occupancy
 - ~ one third of the current one

Schematic done, layout advanced, submission in close future...

Progress Report - AGH R&D on fast ultra-low power 10-bit ADC in 28nm

SAR architecture already verified in 130/65 nm

4-channel ASIC, one channel 279um x 110um

CMOS [nm]	Verification	Power@40MHz [uW]	Max Fsample [MHz]	
130	Prototype ASIC	680	50	M. Firlej et al. JINST 18 P11013 (2023)
65	Prototype ASIC	440	50-60	M. Firlej et al. JINST 19 P01029 (2024)
65	Prototype ASIC	~550	80-90	M. Firlej et al. JINST 19 P01029 (2024)
28	Post-layout simulation	<150 ?	~180 ?	

The Goal – ultra-low power and the highest sampling rate

MiniASIC submitted July 2024

Progress Report – CEA IRFU R&D on 12-bit ADC in 65nm

Motivation — Achieve high resolution, low power with a fairly fast sampling (> 40 MHz) rate for multichannel chip design.

250 μm 150 μm

Design for multichannel ASIC with pitch 150 μm (ADC core + some decoupling) on DNW

Simulation performance summary

Parameters	This work
CMOS [nm]	65
Architecture	TDC-assisted SAR ADCs
Supply voltage [V]	1.2
Resolution [bit]	12
Input range [V]	0.98
Conversion rate [MS/s]	up to 60
DNL	0.47
Dynamic ENOB	10.34
Power [mW]	0.9 mW @ 50 MHz
Core area [mm ²]	0.0375

Calendar:

- The prototype was submitted on April 24 (die with other developments) and returns end of September 24
- · First measures can be taken on October 24

Progress Report - CPPM R&D on hybrid pixels with time measurement in 28nm

- The radiation tolerance of the 28nm process up to 1-2 Grad
- Time measurement with a resolution better than 50ps
- Small pixel size -> 25μm × 25μm

Mini@sics of 2×1 mm2 received June 2023, with 4 main blocks Array of 12×36 pixels (432 pixels)

- Analog pixel array with Fast charge
- amplifiers for high time resolution
- Only the analog part is implemented
- (25×12 µm2)
- SET test structures
- Measure the SET pulse width with a good resolution < 20 ps
 Ring Oscillators for TID tests on digital standard cells
 Test structures for TID tolerance studies

Continuation of the project

- Functional tests to be finalized October 2024
- Irradiation tests the end of 2024
- A new 28 nm design focused on pixel array :
 - TDCs for time measurements
 - Possibility to be bump bonded with sensor array
 - Use of CERN PDK makes the design more manageable
 - Prototype submission scheduled for Q1-2 2025

Progress Report - DGIST R&D on high speed ADC and TX in 28nm

TSMC28nm CMOS Tapeout (2024.08)

Post-layout simulation shows >500MS/s (@ 8-bit) with >7 ENOB, 6-to-8 bit (variable) conventional SAR ADC

□ 40Gb/s PAM-4 DAC-based transmitter (20GS/s 8-bit DAC) (post-layout sim)

Progress Report - DGIST R&D on high speed ADC and TX in 28nm

Planned TSMC28 HPC+ RF shared block

runs

- 2024.12:
 - 8-way-interleaved 8GS/s 8-bit TI-SAR-ADC (asynchronous SAR)
 - Single slice loop-unrolled 8-bit SAR
 - 32Gb/s short-reach transmitter test chip
- **2025.05**:
 - 64-way-interleaved 64GS/s 8-bit TI-SAR-ADC (asynchronous SAR)
 - (Revision version of 2024.08 tapeout): 8-bit DAC-based 40Gb/s PAM-4 TX

Progress Report - ICCUB R&D on 12-bit SAR ADC and 25ps time bin TDC

- 12-bit SAR ADC
 - -Started 10 months ago
 - Verified physical design expected by the end of 2024

- 25ps time bin TDC
 - -Started 1 month ago
 - Using a previous TDC design (based in a PLL) as starting point (25 ps time bin)
 - → Goal: understanding how to improve power, jitter and linearity using the same (or similar) architecture
 - Verified physical design: tbd

Progress Report - ICCUB R&D on 12-bit SAR ADC in CMOS 65nm

- Digitized readout to measure the detected energy of
 - High energy physics experiments (LHCb [1])
 - Medical imaging applications (PET imaging [2])
- Expected ADC performance
 - Precise measurements 12-bit resolution
 - -Very high speed > 40 MSps

<

- High channel density > 16
 channels
 - → Very low power 1mW/ch

Progress and Status

- ADC main blocks
 - SAR digital controller
 - → Schematic verified across corners
 - Latch voltage comparator
 - → Schematic verified across corners and with transient noise
 - Capacitive DAC
 - → Schematic verified across corners
 - → Layout floorplan defined, **currently** integrating the block and optimizing parasitic capacitances
- ADC performance
 - SAR digital controller
 - → Meets timing requirements, does not affect the resolution, and consumes < 0.1mW/ch
 - Latch voltage comparator
 - → Meets timing & resolution (ENOB > 11.5 bits) requirements, and consumes ≈ 0.1mW/ch
 - Capacitive DAC
 - → With initial post layout simulations, meets timing & resolution (ENOB > 11.5 bits) requirements

Progress Report - IP2I

R&D on TPSCo 65nm MCMOS sensors with high-prec. timing

Interest and proposed contributions in DRD7.3

- Investigate Novel Readout Architectures for Pixel Matrix Sensors:
 - Objective: Evaluate and optimize readout architectures to leverage the high precision features of the sensor and the on-chip Time-to-Digital Converter (TDC)
- TDC Architectures Investigated (TPSCo 65 nm):
 - Investigate two TDC architectures to be integrated within a pixel matrix: optimize both area and power consumption
 - Vernier Ring Oscillator TDC
 - Free-Running Delay Line TDC
 - Depending on power consumption and area constraints of the sensor, we may contribute to the design of key components such as FFE, discriminators, and SLVS transmitters...

Progress Report - OMEGA Implementing ADCs and/or TDCs in multichannel chips

OMEGA has been collaborating with other groups developing complex chips containing ADCs/TDCs

□ HGCROC 78 channels - collaboration with AGH, CEA, CERN, Imperial

□ ALTIROC 15 x 15 pixels - collaboration with AGH, CERN, LPCF, SLAC

□ HKROC 36 channels - collaboration with AGH, CEA, CERN, Imperial

Progress Report - SLAC R&D on high precision TDCs

	TDC metrics	
Technology	28nm	
Timing resolution	6.25ps (TOA) / 50ps (TOT)	
Time depth	1.6ns (8bit / 5bit) easily extendable by simple addition of bits to the counter	
TDC core area	19µm x 44µm	
Power consumption	(average, 25ns conversion cycle / bunch crossing)	
10% occupancy	16µW	
1% occupancy	2.5μW	

28nm TDC Prototype ASIC – Test Setup

v1 (submitted Jan. 2023, issues with wire-bounding):

v2 (submitted Jan. 2024, received end of Jun. 2024):

*ASICs employ low-jitter RXs courtesy of Carl Grace (LBNL)

Progress Report - SLAC R&D on high precision TDCs

65nm TDC for MAPS

HEPIC Summer Student (Megan Zeng, Sanford University)

• 8 delay cells with respective delays of 140ps and 12 tuned by adjusting control voltage

Vctrl (V)

7

Progress Report – TU Graz R&D on circuit reliability and RTN influence in 28nm

Random Delay Generator – for histogram calibration

Parameter	Specification	Design	
Process	TSMC28nm 0.9 V		
Supply voltage			
Minimum delay	as small as possible	0.7 ns	
Maximum delay	25 ns	40 ns	
Delay resolution	< 20 ps	< 2.87 ps	
Delay distribution	Uniform	Almost uniform (typ.)	
Power consumption	as small as possible	$300 \ \mu W$	
Area	as small as possible	$1350 \ \mu m^2$	

Submitted in July 2024 run

Design: Marvin Lackner

The work is ongoing in all contributing groups!

 designs will be / have been submitted or prototype blocks are already under tests

The mainly developed blocks are ultra-low power and/or fast 8-12 bit ADCs and sub10-50 ps resolution TDCs. All commonly adopted in HEP CMOS processes, namely 130nm, 65nm and 28nm are used

Thank you for attention