EXTREME ENVIRONMENTS

WP7.4b: Radiation Resistance of Advanced CMOS Nodes

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

3 rd WORKSHOP

Giulio Borghello (CERN EP-ESE-ME) giulio.borghello@cern.ch

2024/09/10 1

This project investigates the radiation response of CMOS technologies from the 28nm node onwar for use in the next generations of ASICs for particle detectors.

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

- vast experience on radiation-effects on CMOS technology
	- 250nm, 130nm, 65nm, 40nm 28nm, 22FDSOI

• 2 X-ray machines (AsteriX and ObeliX)

SEE Characterization Of A Commercial 28nm CMOS Technology **GIULIO BORGHELLO** giulio.borghello@cern.ch **DAVIDE CERESA** davide.ceresa@cern.ch **GIANMARIO BERGAMIN** gianmario.bergamin@cern.ch FRANCISCO PIERNAS DIAZ francisco.piernas.diaz@cern.ch RISTO PEJAŠINOVIĆ risto.pejasinovic@cern.ch **KOSTAS KLOUKINAS** kostas.kloukinas@cern.ch CERI

~50 pages of report on SEE in 28nm technology

- 2 chips (EXP28:SEE, EXP28:ANA)
- Heavy ions and proton tests
	- SRAM
	- DFF
	- SET detector
	- SEL detector
		- SBU
		- MBU
		- SET
		- SEL

https://asic-support-28.web.cern.ch/tech-docs/assets/radtol_reports/SEE_characterization_of_a_commercial_28nm_CMOS_technology.pdf

March 18, 2024

https://asic-support-28.web.cern.ch/tech-docs/assets/radtol_reports/SEE_characterization_of_a_commercial_28nm_CMOS_technology.pdf

March 18, 2024

~50 pages of report on SEE in 28nm technology

- 2 chips (EXP28:SEE, EXP28:ANA)
- Heavy ions and proton tests
	- SRAM
	- DFF
	- SET detector
	- SEL detector
		- SBU
		- MBU

It will be soon updated with new data collected this June.

(SEL only measured for VDD > 1.8V)

https://asic-support-28.web.cern.ch/tech-docs/assets/radtol_reports/SEE_characterization_of_a_commercial_28nm_CMOS_technology.pdf

$H-4$

ELDRS in a commercial 28nm CMOS technology

G. Borghello¹, G. Termo², F. Faccio¹, D. Ceresa¹, R. Pejasinovic¹, G. Bergamin¹, F. Piernas Diaz¹,

K. Kloukinas¹

1. CERN (Switzerland), 2. EPFL (Switzerland)

Evidence of ELDRS in TID-induced leakage current increase was observed in ring-oscillators, SRAMs, and single transistors in 28nm CMOS technology. The influence of bias and temperature was evaluated, and a proposed qualification procedure is discussed.

low-dose-rate tests on
28nm CMOS technology

- TID effects on ESD protections
- TID effects on PN junction
- Simulations (and measure) on dose-enhancement effect
- chip to submit in October 2024

• ….

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

40nm CMOS technology

Statistics of **RTN** evolution with TID

- Test Setup: Characterization of 128 differential inverter-based Ring Oscillators (ROSCs) under TID exposure up to 100 Mrad for power supply levels 600 mV … 800 mV.
- Monitoring Set: RTN tracked in 24 preselected ROSCs at each TID increment.
- Samples: 72 ROSCs analyzed across three chip samples (24 ROSCs per sample).
- Final Characterization: Re-assessment of full chip post-100 Mrad across power supply levels

TCAD modelling of radiation effects

- Good fit with 28nm measurements, with special attention to subthreshold
- Modelled effects of individual traps
- Working on extension towards radiation effects

SIRENS28 HEWILL THE ET

Top Design: Semih Ramazanoglu And Alicja Michalowska-Forsyth

Single device – noise under TID

- Measurements TID influence on noise single devices
- Transistors array (multiple identical transistors) submission to July 2024 run
- Working on extension to statistical results (noise and RTN) on single-devices

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

- - Process qualification in terms of performance for analog, low-power and low-noise circuits
	- Architecture studies
		- Fast charge amplifier array
- Mini@sics of 2×1 mm2 received June 2023, consisting of 4 main blocks
- Array of 12×36 pixels (432 pixels)
	- Analog pixel array with Fast charge amplifiers for high time resolution
	- Only the analog part is implemented ($25 \times 12 \mu m^2$)
- SET test structures
	- Measure the SET pulse width with a good resolution < 20 ps
- Ring Oscillators for TID tests on digital standard cells
- 2024/09/10 17 • Test structures for TID tolerance studies

EXAMPLE CONS NUCLÉAIRE AMUSEUS AND UNIVERSITÉ DES COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

• R&D on hybrid pixels **CPPM 28 nm chip design**

• Collaboration and exchange between CPPM and Graz University on various aspects of design and testing

- - Process qualification in terms of performance for analog, low-power and low-noise circuits
	- Architecture studies
		- Fast charge amplifier array
- Mini@sics of 2×1 mm2 received June 2023, consisting of 4 main blocks
- Array of 12×36 pixels (432 pixels)
	- Analog pixel array with Fast charge amplifiers for high time resolution
	- Only the analog part is implemented ($25 \times 12 \mu m^2$)
- SET test structures
	- Measure the SET pulse width with a good resolution < 20 ps
- Ring Oscillators for TID tests on digital standard cells
- 2024/09/10 18 Test structures for TID tolerance studies

EXAMPLE CONS NUCLÉAIRE AMUSEUS AND UNIVERSITÉ DES COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

• R&D on hybrid pixels **CPPM 28 nm chip design**

• Collaboration and exchange between CPPM and Graz University on various aspects of design and testing

- Study of the effect of TID on the performance of digital standard cells
- Timing of combinatorial or sequential cells
- Leakage currents and static power
- Effects of device size on TID tolerance
- Design based on the digital flow
- 96 Rosc sub-bloc
	- ━ Cell size (7T, 9T,12T)
	- ━ Driving (D0, D2, D4)
	- ━ SVT, LVT, HVT

Simulation

First results

2,5E-11 7T measured 9T measured 12T measured $2E-11$ Propagation Time [s] $1,5E-11$ $1E-11$ 5E-12 Ω **RYD** SIT **AND 1/211 HAT** ADRD LVT **AVO XAV 1472-977 WAYA XAT** AAANDO SUT **PLAINSTAND PARKOZ HARD** Al-Huber 1904 Alpha 547 **PORD HWY NT** ST **Hydr** Lyn **1414 SVT WITH LIFE PARTIO** HIME **DO HAT AIRWO SUT 1447** A/OR2-YM **HUT ADR2** LYT Cell name

Propagation delay versus Cell

cell RO TSMC28nm vs Tp - CHIP1

- 2 chips tested
	- ━ Similar results
- Results seems coherent
	- 12T cell faster than 7T
	- ━ LVT faster than HVT

Issue observed on NAND0

━ check for the firmware and test set-up

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

- Contributors: Luigi Gaioni¹, Massimo Manghisoni¹, Valerio Re¹, Elisa Riceputi¹, Gianluca Traversi¹, Lodovico Ratti², Simone Gerardin³
	- o 1 University of Bergamo and INFN Pavia
	- o 2 University of Pavia and INFN Pavia
	- o 3 University of Padova
- **Area of competence**: design of analog front-end circuits and IP blocks for radiation detectors; study of noise and radiation effects in electronic devices and circuits; nanoscale CMOS technologies.

1st submitted prototype

- **Includes:**
	- **standalone NMOS and PMOS** transistors for static and noise characterization
	- **a standalone charge sensitive amplifier (CSA)** for the evaluation of main analog performance parameters
	- **a 4x8 pixel readout matrix** featuring simple digital configuration and readout (shift registers)

• Investigated devices *irradiated up* <mark>to 3 Grad(SiO₂)</mark> total dose with Xrays (5.5 Mrad/h dose rate)

 I_D (A)

- MOSFETs biased during irradiation in the worst-case condition
- Slight increase in drain leakage current after irradiation
- Limited threshold voltage changes (depending on MOS polarity and geometry)
- Up to 1 Grad, NMOS and PMOS do not feature significant change in their noise properties after irradiation

TID effects on 28nm MOS transistors

Charge sensitive amplifier design

Auxiliary circuits (not shown in the figure) were integrated to emulate the presence of detector capacitance and leakage current

- Regulated cascode gain stage + source follower
- Two independent feedbacks, one for the discharge of the feedback capacitor and the other for the detector leakage compensation.

Charge sensitive amplifier design

- An irradiation campaign has been performed with a target TID of 1 Grad
- Irradiation at room temperature, with a dose rate of 5.4 Mrad/h
- No dramatic effects observed:
	- Slight increase in the **ENC**
	- Moderate variation of the discharge current associated with a threshold change in the MF feedback transistor

ToT-based front-end: chip layout

- 8x32 matrix of readout channels
- $100 \times 25 \mu m^2$ pixels
- Shared 8-bit Time of Arrival Counter (640 MHz)
- Shared 5-bit Time-over-Threshold Counter (40 MHz)
- SPI controller
- Submitted in July

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

BACKUP SLIDES

Flash ADC based front-end riash ADC based in

- Preamp (regulated cascode) two independent feedbacks
- Ancillary blocks for detector emulation

- AC coupled, auto-zeroed comparators, operated with 40 MHz clock, implementing a 2-bit flash ADC. The design is ideally insensitive to device threshold voltage mismatch \rightarrow threshold tuning DAC not required The acordination is racally inscribitive to active threshore
- Overall current consumption: 5.4 uA \rightarrow 4.9 µW power consumption @ V_{DD}=0.9 V
- \bullet Elementary cell size: 25 x 50 μ m² (analog+digital) at the CSA output for a detector capacitance of \mathcal{A} \mathcal{A} for \mathcal{A} \mathcal{A} \mathcal{A} for \mathcal{A}
- **•** Submitted in a **8x4 matrix r** at the temperature of 27[↑]  *simulated* at the temperature of 27[↑]

Flash ADC front end - Test results

ToT-based front-end

- **A front-end architecture (optimized for very low threshold)** is being developed, based on **Time-over-Threshold** (TOT) \rightarrow preamp + DC coupled comparator + threshold tuning DAC
	- Self-cascode preamp gain stage
	- Differential comparator architecture to improve the immunity to interferences

Future steps

- Development of the test setup for the characterization of the ToT-based front-end
- Characterization and radiation qualification of the ToT-based front-end
- Design and characterization of a 28 nm front-end for X-ray imaging applications (ToT conversion with a bi-linear input/output characteristics)
- Development of prototype chip(s) including single devices and IP-blocks with a FinFET technology

* LHCb Velo

EDRRP Group. *The 2021 ECFA detector research and development roadmap*. Tech. Rep. CERN-ESU-017, Geneva, 2020. (<https://cds.cern.ch/record/2784893>)

* LHCb Velo

EDRRP Group. *The 2021 ECFA detector research and development roadmap*. Tech. Rep. CERN-ESU-017, Geneva, 2020. (<https://cds.cern.ch/record/2784893>)

research on commercial CMOS technologies is essential!

* LHCb Velo

EDRRP Group. *The 2021 ECFA detector research and development roadmap*. Tech. Rep. CERN-ESU-017, Geneva, 2020. (<https://cds.cern.ch/record/2784893>)

data from: https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_3nm https://irds.ieee.org/editions/2022/more-moore

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

More specific projects are expected to form around:

Specific nodes (e.g., 7nm finfets, 3nm LGAA, etc.)

Specific effects (e.g., low-dose-rates at ultra-high-doses, NIEL scaling, noise, etc.)

Other possible projects:

- "new" or different technologies (e.g., GaN, InGaAs, etc.)
- facilities (how to irradiate to tens of Grad in a reasonable amount of time)
- qualification (how to qualify chips for ultra-high doses)

difficulties: technology accessibility, facility accessibility