EXTREME ENVIRONMENTS

WP7.4b: Radiation Resistance of Advanced CMOS Nodes

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

3rd WORKSHOP

Giulio Borghello (CERN EP-ESE-ME) giulio.borghello@cern.ch

2024/09/10

This project investigates the radiation response of CMOS technologies from the 28nm node onwar for use in the next generations of ASICs for particle detectors.

Project Name	Radiation Resistance of Advanced CMOS Nodes (WP7.4b)	
Project Description	This project aims to evaluate the radiation response (total	
	ionizing dose TID, single event effects SEE, and displacement	
	damage DD) of commercial CMOS technologies more advanced	
	than the 65nm node for use in the next generations of ASICs for	
	particle detectors. Duration 4-5 years.	
Innovative/strategic vision	Understanding the effects of radiation on CMOS technologies is	
	essential for the design of ASICs used in particle detectors. This	
	project represents a first and crucial step in evaluating the	
	performance of advanced CMOS nodes for the unique	
	environment of particle detectors.	
Performance Target	Deepen the knowledge of the radiation response of 40nm and	
	28nm technologies and begin to study finFETs technologies.	
Milestones and Deliverables	D7.4b.1 (M12) Deliver a 28nm CMOS front-end (FE) circuits	
	for pixel sensors prototype; TID test of IP-blocks in 28nm node	
	D7.4b.2 (M18) Deliver a chip in 28nm CMOS including	
	matrices of FE channels for readout of pixel sensors	
	M7.4b.3 (M24) Radiation test of FE structures; Design and	
	testing of rad-hard memory elements in 28nm node	
	D7.4b.4 (M36) Deliver a prototype in FinFET technology	
	including IP blocks for pixel readout circuits.	
Multi-disciplinary, cross-WP content	In order to ensure the success of projects involving ASIC design	
	for particle detectors, it is imperative to consider the radiation	
	resistance of the technologies used. On the other hand, the	
	definition of radiation qualification would greatly benefit from	
	the input of the designer. For example, ASICs developed in	
	WP7.3a must be radiation tolerant and could also serve as	
	valuable test vehicles to evaluate radiation effects.	
Contributors	CERN	
	AT: TU Graz	
	IT: INFN Pavia, Uni. Bergamo, Uni. Padova, Uni. Pavia	
	FR: CPPM	

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

- vast experience on radiation-effects on CMOS technology
 - 250nm, 130nm, 65nm, 40nm 28nm, 22FDSOI

• 2 X-ray machines (AsteriX and ObeliX)

SEE Characterization Of A Commercial 28nm CMOS Technology GIULIO BORGHELLO giulio.borghello@cern.ch Davide Ceresa davide.ceresa@cern.ch GIANMARIO BERGAMIN gianmario.bergamin@cern.ch FRANCISCO PIERNAS DIAZ francisco.piernas.diaz@cern.ch RISTO PEJAŠINOVIĆ risto.pejasinovic@cern.ch Kostas Kloukinas kostas.kloukinas@cern.ch CERN

~50 pages of report on SEE in 28nm technology

- 2 chips (EXP28:SEE, EXP28:ANA)
- Heavy ions and proton tests
 - SRAM
 - DFF
 - SET detector
 - SEL detector
 - SBU
 - MBU
 - SET
 - SEL

https://asic-support-28.web.cern.ch/tech-docs/assets/radtol_reports/SEE_characterization_of_a_commercial_28nm_CMOS_technology.pdf

March 18, 2024

https://asic-support-28.web.cern.ch/tech-docs/assets/radtol_reports/SEE_characterization_of_a_commercial_28nm_CMOS_technology.pdf

SEE Characterization Of A Commercial 28nm CMOS Technology GIULIO BORGHELLO giulio.borghello@cern.ch Davide Ceresa davide.ceresa@cern.ch GIANMARIO BERGAMIN gianmario.bergamin@cern.ch FRANCISCO PIERNAS DIAZ francisco.piernas.diaz@cern.ch RISTO PEJAŠINOVIĆ risto.pejasinovic@cern.ch Kostas Kloukinas kostas.kloukinas@cern.ch CERN March 18, 2024

~50 pages of report on SEE in 28nm technology

- 2 chips (EXP28:SEE, EXP28:ANA)
- Heavy ions and proton tests
 - SRAM
 - DFF
 - SET detector
 - SEL detector
 - SBU

MBU

(SEL only measured for VDD > 1.8V)

It will be soon updated with

new data collected this June.

https://asic-support-28.web.cern.ch/tech-docs/assets/radtol_reports/SEE_characterization_of_a_commercial_28nm_CMOS_technology.pdf

H-4

ELDRS in a commercial 28nm CMOS technology

<u>G. Borghello</u>¹, G. Termo², F. Faccio¹, D. Ceresa¹, R. Pejasinovic¹, G. Bergamin¹, F. Piernas Diaz¹, K. Kloukinas¹

1. CERN (Switzerland), 2. EPFL (Switzerland)

Evidence of ELDRS in TID-induced leakage current increase was observed in ring-oscillators, SRAMs, and single transistors in 28nm CMOS technology. The influence of bias and temperature was evaluated, and a proposed qualification procedure is discussed.

CERN

 10^{3}

е

- TID effects on ESD protections
- TID effects on PN junction
- Simulations (and measure) on dose-enhancement effect
- chip to submit in October 2024

٠

....

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

40nm CMOS technology

Statistics of RTN evolution with TID

- Test Setup: Characterization of 128 differential inverter-based Ring Oscillators (ROSCs) under TID exposure up to 100 Mrad for power supply levels 600 mV ... 800 mV.
- Monitoring Set: RTN tracked in 24 preselected ROSCs at each TID increment.
- **Samples**: 72 ROSCs analyzed across three chip samples (24 ROSCs per sample).
- Final Characterization: Re-assessment of full chip post-100 Mrad across power supply levels (600 mV to 800 mV).

TCAD modelling of radiation effects

- Good fit with 28nm measurements, with special attention to subthreshold
- Modelled effects of individual traps
- Working on extension towards radiation effects

SIRENS28

Top Design: Semih Ramazanoglu And Alicja Michalowska-Forsyth

Single device – noise under TID

- Measurements TID influence on noise single devices
- Transistors array (multiple identical transistors) submission to July 2024 run
- Working on extension to statistical results (noise and RTN) on single-devices

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

- R&D on hybrid pixels
 - Process qualification in terms of performance for analog, low-power and low-noise circuits
 - Architecture studies
 - Fast charge amplifier array
- Mini@sics of 2×1 mm2 received June 2023, consisting of 4 main blocks
- Array of 12×36 pixels (432 pixels)
 - Analog pixel array with Fast charge amplifiers for high time resolution
 - Only the analog part is implemented (25×12 μ m²)
- SET test structures
 - Measure the SET pulse width with a good resolution < 20 ps
- Ring Oscillators for TID tests on digital standard cells
- Test structures for TID tolerance studies 2024/09/10

CPPM 28 nm chip design

 Collaboration and exchange between CPPM and Graz University on various aspects of design and testing

- R&D on hybrid pixels
 - Process qualification in terms of performance for analog, low-power and low-noise circuits
 - Architecture studies
 - Fast charge amplifier array
- Mini@sics of 2×1 mm2 received June 2023, consisting of 4 main blocks
- Array of 12×36 pixels (432 pixels)
 - Analog pixel array with Fast charge amplifiers for high time resolution
 - Only the analog part is implemented (25×12 μ m²)
- SET test structures
 - Measure the SET pulse width with a good resolution < 20 ps
- Ring Oscillators for TID tests on digital standard cells
- Test structures for TID tolerance studies 2024/09/10

CPPM 28 nm chip design

 Collaboration and exchange between CPPM and Graz University on various aspects of design and testing

- Study of the effect of TID on the performance of digital standard cells
- Timing of combinatorial or sequential cells
- Leakage currents and static power
- Effects of device size on TID tolerance
- Design based on the digital flow
- 96 Rosc sub-bloc
 - Cell size (7T, 9T,12T)
 - Driving (D0, D2, D4)
 - SVT, LVT, HVT

Basic cells	Frequency (MHz)
INVD0	154
INVD2	222
NAND0	118
NAND2	143
NOR0	111
NOR2	139

Simulation

First results

2 chips tested

- Similar results

Results seems coherent

- 12T cell faster than 7T
- LVT faster than HVT

Issue observed on NANDO

- check for the firmware and test set-up

Propagation delay versus Cell

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

- Contributors: Luigi Gaioni¹, Massimo Manghisoni¹, Valerio Re¹, Elisa Riceputi¹, Gianluca Traversi¹, Lodovico Ratti², Simone Gerardin³
 - 1 University of Bergamo and INFN Pavia
 - $\circ~$ 2 University of Pavia and INFN Pavia
 - 3 University of Padova
- Area of competence: design of analog front-end circuits and IP blocks for radiation detectors; study of noise and radiation effects in electronic devices and circuits; nanoscale CMOS technologies.

1st submitted prototype

- Includes:
 - standalone NMOS and PMOS transistors for static and noise characterization
 - a standalone charge sensitive amplifier (CSA) for the evaluation of main analog performance parameters
 - a 4x8 pixel readout matrix featuring simple digital configuration and readout (shift registers)

- Investigated devices irradiated up to 3 Grad(SiO₂) total dose with Xrays (5.5 Mrad/h dose rate)
- MOSFETs biased during irradiation in the worst-case condition
- Slight increase in drain leakage current after irradiation
- Limited threshold voltage changes (depending on MOS polarity and geometry)
- Up to 1 Grad, NMOS and PMOS do not feature significant change in their **noise properties** after irradiation

TID effects on 28nm MOS transistors

2024/09/10

Charge sensitive amplifier design

Auxiliary circuits (not shown in the figure) were integrated to emulate the presence of detector capacitance and leakage current

- Regulated cascode gain stage + source follower
- Two **independent feedbacks**, one for the discharge of the feedback capacitor and the other for the detector leakage compensation.

Charge sensitive amplifier design

- An **irradiation campaign** has been performed with a target TID of **1 Grad**
- Irradiation at room temperature, with a dose rate of 5.4 Mrad/h
- No dramatic effects observed:
 - Slight increase in the ENC
 - Moderate variation of the **discharge current** associated with a threshold change in the MF feedback transistor

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

ToT-based front-end: chip layout

- 8x32 matrix of readout channels
- 100 x 25 µm² pixels
- Shared 8-bit Time of Arrival Counter (640 MHz)
- Shared 5-bit Time-over-Threshold Counter (40 MHz)
- SPI controller
- Submitted in July

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

BACKUP SLIDES

Flash ADC based front-end

- Preamp (**regulated cascode**) two independent feedbacks
- Ancillary blocks for detector emulation

- Overall current consumption: 5.4 uA \rightarrow 4.9 μ W power consumption @ V_{DD}=0.9 V
- Elementary cell size: 25 x 50 μm² (analog+digital)
- Submitted in a **8x4 matrix**

Flash ADC front end - Test results

ToT-based front-end

- A front-end architecture (optimized for very low threshold) is being developed, based on Time-over-Threshold (ToT) → preamp + DC coupled comparator + threshold tuning DAC
 - Self-cascode preamp gain stage
 - Differential comparator architecture to improve the immunity to interferences

Future steps

- Development of the test setup for the characterization of the ToT-based front-end
- Characterization and radiation qualification of the ToT-based front-end
- Design and characterization of a 28 nm front-end for X-ray imaging applications (ToT conversion with a bi-linear input/output characteristics)
- Development of prototype chip(s) including single devices and IP-blocks with a FinFET technology

* LHCb Velo

EDRRP Group. The 2021 ECFA detector research and development roadmap. Tech. Rep. CERN-ESU-017, Geneva, 2020. (https://cds.cern.ch/record/2784893)

* LHCb Velo

EDRRP Group. The 2021 ECFA detector research and development roadmap. Tech. Rep. CERN-ESU-017, Geneva, 2020. (https://cds.cern.ch/record/2784893)

* LHCb Velo

EDRRP Group. The 2021 ECFA detector research and development roadmap. Tech. Rep. CERN-ESU-017, Geneva, 2020. (https://cds.cern.ch/record/2784893)

data from: https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_3nm https://irds.ieee.org/editions/2022/more-moore

7.4.b: EXTREME ENVIRONMENT AND LONGEVITY - RADIATION HARDNESS

Project: radiation resistance of advanced CMOS nodes

More specific projects are expected to form around:

Specific nodes (e.g., 7nm finfets, 3nm LGAA, etc.)

Specific effects (e.g., low-dose-rates at ultra-high-doses, NIEL scaling, noise, etc.)

Other possible projects:

- "new" or different technologies (e.g., GaN, InGaAs, etc.)
- facilities (how to irradiate to tens of Grad in a reasonable amount of time)
- qualification (how to qualify chips for ultra-high doses)

difficulties: technology accessibility, facility accessibility